Citation: | CAI Hao, LI Peng, GONG Xiaomei, WANG Raofen. Segmentation of lung tumors based on PCU-Net[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 444-450. doi: 10.12299/jsues.24-0012 |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J] . CA: A Cancer Journal for Clinicians,2021,71(3):209 − 249. doi: 10.3322/caac.21660
|
[2] |
SOLTANI-NABIPOUR J, KHORSHIDI A, NOORIAN B. Lung tumor segmentation using improved region growing algorithm[J] . Nuclear Engineering and Technology,2020,52(10):2313 − 2319. doi: 10.1016/j.net.2020.03.011
|
[3] |
RAKESH S, MAHESH S. Nodule segmentation of lung CT image for medical applications[J] . Global Transitions Proceedings,2021,2(1):80 − 83. doi: 10.1016/j.gltp.2021.01.011
|
[4] |
VORONTSOV E, ABI-JAOUDEH N, KADOURY S. Metastatic liver tumor segmentation using texture-based omni-directional deformable surface models[C] //proceedings of the 6th International Workshop ABDI 2014. Cham: Springer, 2014: 74−83.
|
[5] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015, 39(4): 640−651.
|
[6] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C] //Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Munich: Springer International Publishing, 2015: 234−241.
|
[7] |
MILLETARI F, NAVAB N, AHMAD SA. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C] //Proceedings of 2016 the Fourth International Conference on 3D Vision (3DV). Piscataway: IEEE, 2016: 565−571.
|
[8] |
OKTAY O, SCHLEMPER J, FOLGOC LL, et al. Attention U-net: Learning where to look for the pancreas[C] //Proceedings of IEEE on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018.
|
[9] |
ZHOU Z, SIDDIQUEE M M, TAJBAKHSH N, et al. Unet ++: Redesigning skip connections to exploit multiscale features in image segmentation[J] . IEEE Transactions on Medical Imaging,2019,39(6):1856 − 1867.
|
[10] |
CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[J] . 2021. DOI: 10.48550/arXiv.2105.05537.
|
[11] |
ZHOU T, DONG Y, LU H, et al. APU-Net: An attention mechanism parallel U-Net for lung tumor segmentation[J] . BioMed Research International , 2022, 2022, 5303651.
|
[12] |
JIANG J, HU Y C, LIU C J, et al. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images[J] . IEEE Transactions on Medical Imaging,2019,38(1):134 − 144. doi: 10.1109/TMI.2018.2857800
|
[13] |
HOSSAIN S, NAJEEB S, SHAHRIYAR A, et al. A pipeline for lung tumor detection and segmentation from CT scans using dilated convolutional neural networks[C] //Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton: IEEE, 2019: 1348−1352.
|
[14] |
CHEN J, KAO S, HE H, et al. Run, don't walk: Chasing higher FLOPs for faster neural networks[C] //Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 12021−12031.
|
[15] |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C] //Proceedings of Coordinate attention for efficient mobile network design. Nashville: IEEE, 2021: 13713−13722.
|