Volume 38 Issue 4
Dec.  2024
Turn off MathJax
Article Contents
GAO Bo, WU Minghui, HU Heping, YANG Chen. Attitude PID control parameter tuning of curtain wall cleaning robot based on improved genetic algorithm[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 429-436, 464. doi: 10.12299/jsues.24-0007
Citation: GAO Bo, WU Minghui, HU Heping, YANG Chen. Attitude PID control parameter tuning of curtain wall cleaning robot based on improved genetic algorithm[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 429-436, 464. doi: 10.12299/jsues.24-0007

Attitude PID control parameter tuning of curtain wall cleaning robot based on improved genetic algorithm

doi: 10.12299/jsues.24-0007
  • Received Date: 2024-01-08
  • Publish Date: 2024-12-31
  • To address the problem of time-consuming and large errors in the attitude PID parameter tuning of a high-rise curtain wall cleaning robot, an improved genetic algorithm (IGA) was proposed. The halton sequence was introduced as the initial population, the adaptive dynamic regulation mechanism was introduced in the crossover and variation stages, and improved integral of time-weighted absolute error (IITAE) evaluation index function with better comprehensive performance was proposed. PID parameter tuning experiments were carried out using IGA, manual empirical method, AGPSO and GA. The results show that the tuning results of the IGA algorithm are more than 20% higher than other algorithms in terms of the objective function value and reduced the convergence time by more than 50%. The controller designed by the IGA methodcan achieve stable control of robot attitude, which has good application value for air attitude stability control of curtain wall cleaning robot.
  • loading
  • [1]
    艾福强, 包建东, 刘正权. 基于粒子群优化模糊PID控制的多足式真空吸附机器人控制方案设计[J] . 电子测量技术,2023,46(2):67 − 72.
    [2]
    徐广红, 陈兵, 杨隆庆, 等. 新型高楼幕墙清洗机器人的研制及安全性分析[J] . 机械设计与制造,2017(2):258 − 262. doi: 10.3969/j.issn.1001-3997.2017.02.070
    [3]
    张晓婷, 李徳镇, 梁仁旺, 等. 挖掘机铲斗电液伺服改进PSO-PID参数整定位置控制[J] . 机械设计与制造,2023(9):181 − 184. doi: 10.3969/j.issn.1001-3997.2023.09.040
    [4]
    宋英杰, 王刚, 唐武生, 等. 基于模糊自适应串级PID控制器的仿生机器鱼位姿控制[J] . 控制工程,2023,30(10):1870 − 1880.
    [5]
    吕红芳, 王涛, 嵇月强, 等. 基于免疫粒子群算法的PID参数优化研究[J] . 中国工程机械学报,2022,20(3):194 − 198. doi: 10.3969/j.issn.1672-5581.2022.3.zggcjxxb202203002
    [6]
    冯浩, 姜金叶, 宋倩玉, 等. 电液伺服系统多PID控制器参数整定优化[J/OL] . 控制理论与应用: 1-5. (2023-10-08)[2024-1-08] . http://kns.cnki.net/kcms/detail/44.1240.tp.20230928.1132.088.html.
    [7]
    XU W, YUE X, YIN S, et al. Research on pid parameter tuning method of brushless DC motor with itae index[C] //Proceedings of 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference(ITNEC). Chongqing: IEEE, 2023: 177−180.
    [8]
    SHI P. PID parameter tuning based on improved particle swarm optimization algorithm[C] //Proceedings of 2023 3rd International Conference on Electrical Engineering and Computer Technology. Nanjing: IOP Publishing, 2023.
    [9]
    李盛前, 张小帆. 基于免疫粒子群的机器人自抗扰控制器参数整定方法[J] . 机床与液压,2023, 51(14): 63−68. doi: 10.3969/j.issn.1001-3881.2023.14.011
    [10]
    李昆, 赵理, 汪光, 等. 基于适应度继承的航空发电机比例-积分-微分参数优化算法[J] . 科学技术与工程,2021,21(33):14258 − 14265. doi: 10.3969/j.issn.1671-1815.2021.33.031
    [11]
    PRATA B, BASANTA P, KRISHNA Y P, et al. Application of particle swarm optimization (PSO) algorithm for PID parameter tuning in speed control of brushless DC (BLDC) motor[J] . Journal of Physics: Conference Series,2023,2570(1):012018.
    [12]
    HU Z F, LIU Y J, HE Y L, et al. Fuzzy PID control of the three-degree-of-freedom parallel mech- anism based on genetic algorithm[J] . Applied Sciences,2022,12(21):11128.
    [13]
    周向阳, 时延君. 惯性稳定平台单神经元PID自适应复合控制与参数优化[J] . 仪器仪表学报,2019,40(11):189 − 196.
    [14]
    吴振龙, 张灿, 刘艳红. 基于多目标遗传算法的四旋翼飞行器PID设计[EB/OL] . (2023-11-24)[2024-01-08] . https://doi.org/10.14107/j.cnki.kzgc.20220390.
    [15]
    刘建娟, 吴豪然, 姬淼鑫, 等. 多策略改进粒子群优化AGV模糊PID控制[EB/OL] . (2023-11-03)[2024-01-08] . http://kns.cnki.net/kcms/detail/44.1259.TH.20231103.1132.004.html.
    [16]
    梁杰, 专祥涛, 严家政. 基于深度强化学习TD3的PID参数自整定算法[EB/OL] . (2023-04-13)[2024-01-08] . http://kns.cnki.net/kcms/detail/42.1675.T.20230412.1609.002.html.
    [17]
    KRÖMER P, PLATOŠ J, SNÁŠEL V. Differential evolution for the optimization of low-discre -pancy generalized halton sequences[J] . Swarm and Evolutionary Computation,2020,54:100649. doi: 10.1016/j.swevo.2020.100649
    [18]
    MMAHADEVA R, KUMAR M, PATHOLE S P, et al. PID control design using AGPSO technique and its application in TITO reverse osmosis desalination plant[J] . IEEE Access,2022,10:125881 − 125892. doi: 10.1109/ACCESS.2022.3224127
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (23) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return