Citation: | GAO Bo, WU Minghui, HU Heping, YANG Chen. Attitude PID control parameter tuning of curtain wall cleaning robot based on improved genetic algorithm[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 429-436, 464. doi: 10.12299/jsues.24-0007 |
[1] |
艾福强, 包建东, 刘正权. 基于粒子群优化模糊PID控制的多足式真空吸附机器人控制方案设计[J] . 电子测量技术,2023,46(2):67 − 72.
|
[2] |
徐广红, 陈兵, 杨隆庆, 等. 新型高楼幕墙清洗机器人的研制及安全性分析[J] . 机械设计与制造,2017(2):258 − 262. doi: 10.3969/j.issn.1001-3997.2017.02.070
|
[3] |
张晓婷, 李徳镇, 梁仁旺, 等. 挖掘机铲斗电液伺服改进PSO-PID参数整定位置控制[J] . 机械设计与制造,2023(9):181 − 184. doi: 10.3969/j.issn.1001-3997.2023.09.040
|
[4] |
宋英杰, 王刚, 唐武生, 等. 基于模糊自适应串级PID控制器的仿生机器鱼位姿控制[J] . 控制工程,2023,30(10):1870 − 1880.
|
[5] |
吕红芳, 王涛, 嵇月强, 等. 基于免疫粒子群算法的PID参数优化研究[J] . 中国工程机械学报,2022,20(3):194 − 198. doi: 10.3969/j.issn.1672-5581.2022.3.zggcjxxb202203002
|
[6] |
冯浩, 姜金叶, 宋倩玉, 等. 电液伺服系统多PID控制器参数整定优化[J/OL] . 控制理论与应用: 1-5. (2023-10-08)[2024-1-08] . http://kns.cnki.net/kcms/detail/44.1240.tp.20230928.1132.088.html.
|
[7] |
XU W, YUE X, YIN S, et al. Research on pid parameter tuning method of brushless DC motor with itae index[C] //Proceedings of 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference(ITNEC). Chongqing: IEEE, 2023: 177−180.
|
[8] |
SHI P. PID parameter tuning based on improved particle swarm optimization algorithm[C] //Proceedings of 2023 3rd International Conference on Electrical Engineering and Computer Technology. Nanjing: IOP Publishing, 2023.
|
[9] |
李盛前, 张小帆. 基于免疫粒子群的机器人自抗扰控制器参数整定方法[J] . 机床与液压,2023, 51(14): 63−68. doi: 10.3969/j.issn.1001-3881.2023.14.011
|
[10] |
李昆, 赵理, 汪光, 等. 基于适应度继承的航空发电机比例-积分-微分参数优化算法[J] . 科学技术与工程,2021,21(33):14258 − 14265. doi: 10.3969/j.issn.1671-1815.2021.33.031
|
[11] |
PRATA B, BASANTA P, KRISHNA Y P, et al. Application of particle swarm optimization (PSO) algorithm for PID parameter tuning in speed control of brushless DC (BLDC) motor[J] . Journal of Physics: Conference Series,2023,2570(1):012018.
|
[12] |
HU Z F, LIU Y J, HE Y L, et al. Fuzzy PID control of the three-degree-of-freedom parallel mech- anism based on genetic algorithm[J] . Applied Sciences,2022,12(21):11128.
|
[13] |
周向阳, 时延君. 惯性稳定平台单神经元PID自适应复合控制与参数优化[J] . 仪器仪表学报,2019,40(11):189 − 196.
|
[14] |
吴振龙, 张灿, 刘艳红. 基于多目标遗传算法的四旋翼飞行器PID设计[EB/OL] . (2023-11-24)[2024-01-08] . https://doi.org/10.14107/j.cnki.kzgc.20220390.
|
[15] |
刘建娟, 吴豪然, 姬淼鑫, 等. 多策略改进粒子群优化AGV模糊PID控制[EB/OL] . (2023-11-03)[2024-01-08] . http://kns.cnki.net/kcms/detail/44.1259.TH.20231103.1132.004.html.
|
[16] |
梁杰, 专祥涛, 严家政. 基于深度强化学习TD3的PID参数自整定算法[EB/OL] . (2023-04-13)[2024-01-08] . http://kns.cnki.net/kcms/detail/42.1675.T.20230412.1609.002.html.
|
[17] |
KRÖMER P, PLATOŠ J, SNÁŠEL V. Differential evolution for the optimization of low-discre -pancy generalized halton sequences[J] . Swarm and Evolutionary Computation,2020,54:100649. doi: 10.1016/j.swevo.2020.100649
|
[18] |
MMAHADEVA R, KUMAR M, PATHOLE S P, et al. PID control design using AGPSO technique and its application in TITO reverse osmosis desalination plant[J] . IEEE Access,2022,10:125881 − 125892. doi: 10.1109/ACCESS.2022.3224127
|