Citation: | SHI Zhanwang, YANG Jufen, ZHU Haiyan. Identification of key cognitive ability factors for metro train drivers based on VTS data mining[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 375-381. doi: 10.12299/jsues.24-0001 |
[1] |
周晓勤. 中国城市轨道交通发展战略与“十四五”发展思路[J] . 城市轨道交通,2020(11):16 − 21.
|
[2] |
宋俊福. 铁路车站值班员应急处置能力评价体系构建[J] . 铁道运输与经济,2022,44(1):112 − 119, 133.
|
[3] |
潘雨帆, 史磊, 周宏宇等. 基于LSTM-Attention的高速铁路司机警觉度预测[J] . 铁道学报,2023,45(11):29 − 37. doi: 10.3969/j.issn.1001-8360.2023.11.004
|
[4] |
何静, 丁晨辉, 刘伟. 地铁列车司机压力知觉的潜在剖面及影响因素[J] . 中国健康心理学杂志,2023,31(9):1359 − 1364.
|
[5] |
郑刚, 俎兆飞, 孔祚. 基于驾驶员反应时间的自动紧急制动避撞策略[J] . 重庆理工大学学报(自然科学),2020,34(12):45 − 52.
|
[6] |
GUO M, HU L, YE L. Cognition and driving safety: How does the high-speed railway drivers’s cognitive ability affect safety performance[J] . Transportation Research Part F: Traffic Psychology and Behaviour,2019,65:10 − 22. doi: 10.1016/j.trf.2019.07.006
|
[7] |
ASCHENBRENNER A J, MURPHY S A, DOHERTY J M, et al. Neuropsychological correlates of changes in driving behavior among clinically healthy older adults[J] . The Journals of Gerontology: Series B,2022,77(10):1769 − 1778. doi: 10.1093/geronb/gbac101
|
[8] |
LI G, LAI W, SUI X, et al. Influence of traffic congestion on driver behavior in post-congestion driving[J] . Accident Analysis & Prevention,2020,141:105508.
|
[9] |
LE A S, SUZUKI T, AOKI H. Evaluating driver cognitive distraction by eye tracking: From simulator to driving[J] . Transportation Research Interdisciplinary Perspectives,2020,4:100087. doi: 10.1016/j.trip.2019.100087
|
[10] |
王清源, 黄远春, 刘志钢. 基于VTS测评的轨道交通驾驶员职业素质能力与大五人格特质的相关性分析[J] . 物流科技,2022,45(3):77 − 80 doi: 10.3969/j.issn.1002-3100.2022.03.019
|
[11] |
刘海江, 吴雨林. 基于PCA-SVM的DCT汽车驾驶员起步意图识别[J] . 汽车工程学报,2021,11(5):369 − 378. doi: 10.3969/j.issn.2095-1469.2021.05.08
|
[12] |
HASAN B M S, ABDULAZEEZ A M. A review of principal component analysis algorithm for dimensionality reduction[J] . Journal of Soft Computing and Data Mining,2021,2(1):20 − 30.
|
[13] |
王丽芳, 刘泽, 何科毅, 等. 基于主成分分析和聚类分析的再造烟叶综合品质评价[J] . 品牌与标准化,2023(1):121 − 123.
|
[14] |
CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C] //Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: IEEE, 2016: 785−794.
|
[15] |
XU J, ZHANG Y, MIAO D. Three-way confusion matrix for classification: A measure driven view[J] . Information Sciences,2020,507:772 − 794. doi: 10.1016/j.ins.2019.06.064
|
[16] |
YACOUBY R, AXMAN D. Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models[C] //Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems. Stroudsburg: Association for Computational Linguistics, 2020: 79−91.
|
[17] |
LUNDBERG S , LEE S I. A unified approach to interpreting model predictions[C] //Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017.
|
[18] |
聂小虎, 吴东平, 安静仪, 等. 基于LightGBM和SHAP的地铁短时进站客流预测及影响因素分析[J] . 铁道经济研究,2023(5):50 − 55. doi: 10.3969/j.issn.1004-9746.2023.05.010
|