Citation: | ZHANG Jingwen, GE Zhangyi, WAN Zhaomei, LI Jiuxiao, MA Xiaopei, ZHANG Rui, WANG Renjie, ZHENG Yan, TAO Junzhou. Friction and wear properties of graphene reinforced titanium matrix composites[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 395-399. doi: 10.12299/jsues.23-0272 |
[1] |
王寅, 邓贤超, 李轩, 等. TC4 钛合金表面铜−氧化石墨烯复合电镀层的组织结构和摩擦磨损性能[J] . 电镀与涂饰,2023,42(15):32 − 39.
|
[2] |
ZHANG B, ZHANG F M, FARHAD S, et al. Graphene-TiC hybrid reinforced titanium matrix composites with 3D network architecture: Fabrication, microstructure and mechanical properties[J] . Journal of Alloys and Compounds,2021,859:157777.
|
[3] |
MELO-FONSECA F, GASIK M, MADEIRA S, et al. Surface characterization of titanium-based substrates for orthopedic applications[J] . Materials Characterization,2021,177:111161.
|
[4] |
张丹丹, 沈洪雷, 曹霞, 等. 石墨烯增强金属基航空复合材料研究进展[J] . 材料工程,2019,47(1):1 − 10.
|
[5] |
MU X N, CAI H N, ZHANG H M, et al. Size effect of flake Ti powders on the mechanical properties in graphene nanoflakes/Ti fabricated by flake powder metallurgy[J] . Composites Part A: Applied Science and Manufacturing,2019,123:86 − 96. doi: 10.1016/j.compositesa.2019.04.027
|
[6] |
MOGERA U, KULKARNI G U. A new twist in graphene research: Twisted graphene[J] . Carbon,2020,156:470 − 487. doi: 10.1016/j.carbon.2019.09.053
|
[7] |
万召梅, 李九霄, 侯书洛, 等. 石墨烯增强钛基复合材料的研究进展[J] . 上海工程技术大学学报,2021,35(1):33 − 36 ,42.
|
[8] |
殷亚军, 李志强, 张国阳, 等. 氧化石墨烯对镀镍层耐磨性的影响[J] . 电镀与环保,2019,39(1):7 − 9. doi: 10.3969/j.issn.1000-4742.2019.01.003
|
[9] |
徐祥, 宋玲玲, 官雨柔, 等. 石墨烯增强金属基复合材料制备方法的研究进展[J] . 材料热处理学报,2019,40(5):24 − 31.
|
[10] |
李铮, 方建华, 林旺, 等. 石墨烯增强金属基复合材料的研究进展[J] . 化学工程师,2021,311(8):51 − 54.
|
[11] |
万召梅. 石墨烯增强钛合金的制备及性能研究[D] . 上海: 上海工程技术大学, 2022.
|
[12] |
PATIL A S, HIWARKAR V D, VERMA P K, et al. Effect of TiB2 addition on the microstructure and wear resistance of Ti-6Al-4V alloy fabricated through direct metal laser sintering (DMLS)[J] . Journal of Alloys and Compounds,2019,777:165 − 173. doi: 10.1016/j.jallcom.2018.10.308
|
[13] |
ASHOK R J, KAILAS S V. Evolution of wear debris morphology during dry sliding of Ti–6Al–4V against SS316L under ambient and vacuum conditions[J] . Wear,2020,456/457:203378. doi: 10.1016/j.wear.2020.203378
|
[14] |
杨玄依, 陈彩英, 杜金航, 等. 石墨烯增强金属基复合材料研究进展[J] . 稀有金属材料与工程,2021,50(9):3408 − 3416.
|
[15] |
杨植禄, 马盼, 张楠, 等. 选区激光熔化石墨烯增强金属基复合材料研究进展[J/OL] . 材料科学与工艺 , 2023: 1−13. DOI: 10.11951/j.issn.1005-0299.20230002.
|
[16] |
FARÍAS I, OLMOS L, JIMÉNEZ O, et al. Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering[J] . Transactions of Nonferrous Metals Society of China,2019,29(8):1653 − 1664. doi: 10.1016/S1003-6326(19)65072-7
|
[17] |
YU J S, ZHAO Q Y, HUANG S X, et al. Enhanced mechanical and tribological properties of graphene nanoplates reinforced TC21 composites using spark plasma sintering[J] . Journal of Alloys and Compounds,2021,873:159764. doi: 10.1016/j.jallcom.2021.159764
|
[18] |
谢嘉琪, 史昆, 刘时兵, 等. 原位自生高体积分数钛基复合材料的组织及摩擦磨损性能[J] . 铸造,2022,71(3):346 − 350. doi: 10.3969/j.issn.1001-4977.2022.03.015
|
[19] |
WAN. Z M, LI J X, YANG D Y, et al. Microstructural and mechanical properties characterization of graphene oxide-reinforced Ti-matrix composites[J] . Coatings,2022,12(2):120.
|
[20] |
沈建明, 张耀祖, 曹建, 等. 石墨烯对激光熔化沉积 TC4 钛合金组织与力学性能的影响[J] . 热加工工艺,2023,52(11):90 − 93.
|