Volume 38 Issue 4
Dec.  2024
Turn off MathJax
Article Contents
ZHANG Jingwen, GE Zhangyi, WAN Zhaomei, LI Jiuxiao, MA Xiaopei, ZHANG Rui, WANG Renjie, ZHENG Yan, TAO Junzhou. Friction and wear properties of graphene reinforced titanium matrix composites[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 395-399. doi: 10.12299/jsues.23-0272
Citation: ZHANG Jingwen, GE Zhangyi, WAN Zhaomei, LI Jiuxiao, MA Xiaopei, ZHANG Rui, WANG Renjie, ZHENG Yan, TAO Junzhou. Friction and wear properties of graphene reinforced titanium matrix composites[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 395-399. doi: 10.12299/jsues.23-0272

Friction and wear properties of graphene reinforced titanium matrix composites

doi: 10.12299/jsues.23-0272
Funds:  Class Ⅲ Peak Discipline of Shanghai-Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing)
  • Received Date: 2023-12-19
  • Publish Date: 2024-12-31
  • Titanium alloy has low density, high specific strength, high stiffness, high temperature resistance and corrosion resistance. However, its low hardness, poor thermal conductivity, high viscosity and poor wear resistance have become an important problem restricting the application of titanium alloys. Graphene reinforced titanium matrix composites were prepared by powder metallurgy, the effects of graphene on microstructure, hardness, tensile properties and friction and wear properties were studied. The results show that the grain size of titanium matrix composites is smaller than that of matrix, and the grain size decreases with the increase of graphene content. Compared with the matrix, the hardness, strength and friction and wear properties of titanium matrix composites are significantly improved. With the increasing of graphene content, the hardness and strength increase, the plasticity decreases, and the friction coefficient and wear amount both decrease. When the sintering temperature is 1273 K and the mass fraction of graphene is 0.5%, the hardness, tensile and friction wear properties of titanium matrix composites are the best, and the wear loss is the lowest, which is 40% lower than that of matrix.
  • loading
  • [1]
    王寅, 邓贤超, 李轩, 等. TC4 钛合金表面铜−氧化石墨烯复合电镀层的组织结构和摩擦磨损性能[J] . 电镀与涂饰,2023,42(15):32 − 39.
    [2]
    ZHANG B, ZHANG F M, FARHAD S, et al. Graphene-TiC hybrid reinforced titanium matrix composites with 3D network architecture: Fabrication, microstructure and mechanical properties[J] . Journal of Alloys and Compounds,2021,859:157777.
    [3]
    MELO-FONSECA F, GASIK M, MADEIRA S, et al. Surface characterization of titanium-based substrates for orthopedic applications[J] . Materials Characterization,2021,177:111161.
    [4]
    张丹丹, 沈洪雷, 曹霞, 等. 石墨烯增强金属基航空复合材料研究进展[J] . 材料工程,2019,47(1):1 − 10.
    [5]
    MU X N, CAI H N, ZHANG H M, et al. Size effect of flake Ti powders on the mechanical properties in graphene nanoflakes/Ti fabricated by flake powder metallurgy[J] . Composites Part A: Applied Science and Manufacturing,2019,123:86 − 96. doi: 10.1016/j.compositesa.2019.04.027
    [6]
    MOGERA U, KULKARNI G U. A new twist in graphene research: Twisted graphene[J] . Carbon,2020,156:470 − 487. doi: 10.1016/j.carbon.2019.09.053
    [7]
    万召梅, 李九霄, 侯书洛, 等. 石墨烯增强钛基复合材料的研究进展[J] . 上海工程技术大学学报,2021,35(1):33 − 36 ,42.
    [8]
    殷亚军, 李志强, 张国阳, 等. 氧化石墨烯对镀镍层耐磨性的影响[J] . 电镀与环保,2019,39(1):7 − 9. doi: 10.3969/j.issn.1000-4742.2019.01.003
    [9]
    徐祥, 宋玲玲, 官雨柔, 等. 石墨烯增强金属基复合材料制备方法的研究进展[J] . 材料热处理学报,2019,40(5):24 − 31.
    [10]
    李铮, 方建华, 林旺, 等. 石墨烯增强金属基复合材料的研究进展[J] . 化学工程师,2021,311(8):51 − 54.
    [11]
    万召梅. 石墨烯增强钛合金的制备及性能研究[D] . 上海: 上海工程技术大学, 2022.
    [12]
    PATIL A S, HIWARKAR V D, VERMA P K, et al. Effect of TiB2 addition on the microstructure and wear resistance of Ti-6Al-4V alloy fabricated through direct metal laser sintering (DMLS)[J] . Journal of Alloys and Compounds,2019,777:165 − 173. doi: 10.1016/j.jallcom.2018.10.308
    [13]
    ASHOK R J, KAILAS S V. Evolution of wear debris morphology during dry sliding of Ti–6Al–4V against SS316L under ambient and vacuum conditions[J] . Wear,2020,456/457:203378. doi: 10.1016/j.wear.2020.203378
    [14]
    杨玄依, 陈彩英, 杜金航, 等. 石墨烯增强金属基复合材料研究进展[J] . 稀有金属材料与工程,2021,50(9):3408 − 3416.
    [15]
    杨植禄, 马盼, 张楠, 等. 选区激光熔化石墨烯增强金属基复合材料研究进展[J/OL] . 材料科学与工艺 , 2023: 1−13. DOI: 10.11951/j.issn.1005-0299.20230002.
    [16]
    FARÍAS I, OLMOS L, JIMÉNEZ O, et al. Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering[J] . Transactions of Nonferrous Metals Society of China,2019,29(8):1653 − 1664. doi: 10.1016/S1003-6326(19)65072-7
    [17]
    YU J S, ZHAO Q Y, HUANG S X, et al. Enhanced mechanical and tribological properties of graphene nanoplates reinforced TC21 composites using spark plasma sintering[J] . Journal of Alloys and Compounds,2021,873:159764. doi: 10.1016/j.jallcom.2021.159764
    [18]
    谢嘉琪, 史昆, 刘时兵, 等. 原位自生高体积分数钛基复合材料的组织及摩擦磨损性能[J] . 铸造,2022,71(3):346 − 350. doi: 10.3969/j.issn.1001-4977.2022.03.015
    [19]
    WAN. Z M, LI J X, YANG D Y, et al. Microstructural and mechanical properties characterization of graphene oxide-reinforced Ti-matrix composites[J] . Coatings,2022,12(2):120.
    [20]
    沈建明, 张耀祖, 曹建, 等. 石墨烯对激光熔化沉积 TC4 钛合金组织与力学性能的影响[J] . 热加工工艺,2023,52(11):90 − 93.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (30) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return