Citation: | CHEN Xu, MIAO Xuelong, ZHENG Jinbao, DI Yage, ZHAO Zhifeng, GUO Lixin. Study on effect of diesel injection strategy on performance of ammonia-diesel dual-fuel engine[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 355-362. doi: 10.12299/jsues.23-0271 |
[1] |
KURIEN C, MITTAL M. Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines[J] . Energy Conversion and Management,2022,251:114990. doi: 10.1016/j.enconman.2021.114990
|
[2] |
REITER A J, KONG S C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J] . Fuel,2011,90(1):87 − 97. doi: 10.1016/j.fuel.2010.07.055
|
[3] |
NIKI Y, NITTA Y, SEKIGUCHI H, et al. Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air[J] . Journal of Engineering for Gas Turbines and Power: Transactions of the ASME,2019,141(6). DOI: 10.1115/1.4042507.
|
[4] |
YOUSEFI A, GUO H S, DEV S, et al. Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine[J] . Fuel,2022,314:122723. doi: 10.1016/j.fuel.2021.122723
|
[5] |
YOUSEFI A, GUO H, DEV S, et al. A study on split diesel injection on thermal efficiency and emissions of an ammonia/diesel dual-fuel engine[J] . Fuel,2022,316:123412. doi: 10.1016/j.fuel.2022.123412
|
[6] |
LI T, ZHOU X, WANG N, et al. A comparison between low- and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines[J] . Journal of the Energy Institute,2022,102:362 − 373. doi: 10.1016/j.joei.2022.04.009
|
[7] |
WANG B, YANG C, WANG H, et al. Effect of Diesel-Ignited Ammonia/Hydrogen mixture fuel combustion on engine combustion and emission performance[J] . Fuel,2023,331:125865. doi: 10.1016/j.fuel.2022.125865
|
[8] |
刘海峰, 宋腾达, 黄志雄, 等. 氨/柴油燃烧模型构建及低速机性能优化[J] . 内燃机学报,2023,41(5):395 − 403.
|
[9] |
崔磊, 王怀印. 船用氨燃料低速机缸内燃烧的数值模拟研究[J] . 工程热物理学报,2023,44(11):3151 − 3159.
|
[10] |
FRASSOLDATI A, D'ERRICO G, LUCCHINI T, et al. Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations[J] . Combustion and Flame,2015,162(10):3991 − 4007. doi: 10.1016/j.combustflame.2015.07.039
|
[11] |
OTOMO J, KOSHI M, MITSUMORI T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion[J] . International Journal of Hydrogen Energy,2018,43(5):3004 − 3014. doi: 10.1016/j.ijhydene.2017.12.066
|
[12] |
HAN Z, REITZ R D. Turbulence modeling of internal combustion engines using RNG κ-ε models[J] . Combustion Science and Technology, 1995, 106(4/5/6): 267 − 295. doi: 10.1080/00102209508907782
|
[13] |
AMSDEN A A, O'ROURKE P J, BUTLER T. D. A computer program for chemically reactive flows with sprays[J] . NASA STI/Recon Technical Report N, 1989, 89: 27975.
|
[14] |
BEALE J C, REITZ R D. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model [J] . Atomization and Sprays, 1999, 9(6): 623−650.
|
[15] |
SCHMIDT D P, RUTLAND C J. A new droplet collision algorithm[J] . Journal of Computational Physics,2000,164(1):62 − 80. doi: 10.1006/jcph.2000.6568
|
[16] |
O'ROURKE P J, AMSDEN A A. A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model[J] . SAE Transactions,2000,109:281 − 298.
|
[17] |
JIN S, WU B, ZI Z, et al. Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine[J] . Fuel,2023,341:127668. doi: 10.1016/j.fuel.2023.127668
|
[18] |
HAN X L, LUBRANO L M, KONNOV A A. An experimental and kinetic modeling study on the laminar burning velocity of NH3 + N2O + air flames[J] . Combustion and Flame,2021,228:13 − 28. doi: 10.1016/j.combustflame.2021.01.027
|