Citation: | HE Jiaxing, CHEN Xingjie, LYU Zhaomin. Rolling bearing fault diagnosis method based on adaptive spectral loss generative adversarial networks[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 406-413. doi: 10.12299/jsues.23-0254 |
[1] |
FAN J G, YUAN X F, MIAO Z M, et al. Full attention Wasserstein GAN with gradient normalization for fault diagnosis under imbalanced data[J] . IEEE Transactions on Instrumentation and Measurement,2022,71:1 − 16.
|
[2] |
LEI Y G, YANG B, JIANG X W, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap[J] . Mechanical Systems and Signal Processing,2020,138:106587. doi: 10.1016/j.ymssp.2019.106587
|
[3] |
郭玉荣, 茅健, 赵嫚. 基于CNN与注意力BiLSTM的轴承剩余使用寿命预测方法[J] . 上海工程技术大学学报,2023,37(1):96 − 104.
|
[4] |
SHAO H D, XIA M, WAN J F, et al. Modified stacked autoencoder using adaptive morlet wavelet for intelligent fault diagnosis of rotating machinery[J] . IEEE/ASME Transactions on Mechatronics,2022,27(1):24 − 33. doi: 10.1109/TMECH.2021.3058061
|
[5] |
JIA F, LEI Y G, LIN J, et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J] . Mechanical Systems and Signal Processing,2016,72/73:303 − 315. doi: 10.1016/j.ymssp.2015.10.025
|
[6] |
SHAO H D, JIANG H K, ZHANG H Z, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J] . Mechanical Systems and Signal Processing,2018,100:743 − 765. doi: 10.1016/j.ymssp.2017.08.002
|
[7] |
ZHANG T C, CHEN J L, LI F D, et al. Intelligent fault diagnosis of machines with small & imbalanced data: a state-of-the-art review and possible extensions[J] . ISA Transactions,2022,119:152 − 171. doi: 10.1016/j.isatra.2021.02.042
|
[8] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C] //Proceedings of Conference on Neural Information Processing Systems. New York: ACM, 2020: 139−144.
|
[9] |
ZHANG T C, CHEN J L, LI F D, et al. A small sample focused intelligent fault diagnosis scheme of machines via multi-modules learning with gradient penalized generative adversarial networks[J] . IEEE Transactions on Industrial Electronics,2020,68(10):10130 − 10141.
|
[10] |
WANG Z R, WANG J, WANG Y R. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J] . Neurocomputing,2018,310:213 − 222. doi: 10.1016/j.neucom.2018.05.024
|
[11] |
ZHOU F N, YANG S, FUJITA H, et al. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data[J] . Knowledge-Based Systems,2020,187:104837. doi: 10.1016/j.knosys.2019.07.008
|
[12] |
肖雄, 肖宇雄, 张勇军, 等. 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J] . 中国电机工程学报,2021,41(2):738 − 749.
|
[13] |
ZHANG L, ZHANG H, CAI G W, et al. The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model[J] . IEEE Transactions on Instrumentation and Measurement,2022,71:1 − 12.
|
[14] |
LIANG P, DENG C, WU J, et al. Single and simultaneous fault diagnosis of gearbox via a semi-supervised and high-accuracy adversarial learning framework[J] . Knowledge-Based Systems,2020,198:105895. doi: 10.1016/j.knosys.2020.105895
|
[15] |
TAO H F, WANG P, CHEN Y, et al. An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks[J] . Journal of the Franklin Institute,2020,357(11):7286 − 7307 doi: 10.1016/j.jfranklin.2020.04.024
|
[16] |
THOMAZELLA R, NASCIMENTO W L, ROBERTO P A, et al. Digital signal processing for self-vibration monitoring in grinding: A new approach based on the time-frequency analysis of vibration signals[J] . Measurement,2019,145:71 − 83. doi: 10.1016/j.measurement.2019.05.079
|
[17] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J] . IEEE Transactions on Image Processing,2004,13(4):600 − 612. doi: 10.1109/TIP.2003.819861
|
[18] |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 586−595.
|
[19] |
CRESWELL A, WHITE T, DUMOULIN V, et al. Generative Adversarial Networks: an overview[J] . IEEE Signal Processing Magazine,2018,35(1):53 − 65. doi: 10.1109/MSP.2017.2765202
|
[20] |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C] //International Conference on Learning Representations. San Juan: ICLR, 2016.
|
[21] |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C] //Proceedings of the 34th International Conference on Machine Learning. New York: ACM, 2017: 214−223.
|