Citation: | HAO Zhaoyang, ZHENG Jinbao, MIAO Xuelong, DI Yage. Impact of bipolar plate flow channel cross-section shape on PEMFC mass transfer and performance[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 382-388. doi: 10.12299/jsues.23-0218 |
[1] |
SINGLA MK, NIJHAWAN P, OBEROI AS. Hydrogen fuel and fuel cell technology for cleaner future: a review[J] . Environ Sci Pollut Res Int,2021,28(13):15607 − 15626.
|
[2] |
MANOHARAN Y, HOSSEINI SE, BUTLER B, et al. Hydrogen fuel cell vehicles; current status and future prospect[J] . Applied Sciences-Basel,2019,9(11):2296 − 2313.
|
[3] |
AHLUWALIA RK, WANG X. Fuel cell systems for transportation: status and trends[J] . Journal of Power Sources,2008,177(1):167 − 176.
|
[4] |
BOCK R, KAROLIUSSEN H, POLLET BG, et al. The influence of graphitization on the thermal conductivity of catalyst layers and temperature gradients in proton exchange membrane fuel cells[J] . International Journal of Hydrogen Energy,2020,45(2):1335 − 1342.
|
[5] |
WANG Y, CHEN KS, MISHLER J,et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J] . Applied Energy,2011,88(4):981 − 1007.
|
[6] |
颜敬昊, 孙宾宾, 高松. 流道截面形状对质子交换膜燃料电池性能的影响[J] . 山东理工大学学报(自然科学版),2021,35(6):11 − 17.
|
[7] |
WANG XD, YAN WM, DUAN YY, et al. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field[J] . Energy Conversion and Management,2010,51(5):959 − 968.
|
[8] |
VARADHA RAJAN L, PAVANAN V, PALANISWAMY K. Interdigitated flow channel on a proton exchange membrane fuel cell investigated using the response surface methodology[J] . Transactions of FAMENA,2019,43(2):61 − 72.
|
[9] |
MOHAMMEDIA, SAHLI Y, BEN MOUSSA H. 3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels[J] . Fuel,2020,263(3):116713 − 116741.
|
[10] |
MANSO AP, MARZO FF, BARRANCO J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J] . International Journal of Hydrogen Energy,2012,37(20):15256 − 15287.
|
[11] |
PAULINO ALR, CUNHA EF, ROBALINHO E, et al. CFD analysis of PEMFC flow channel cross sections[J] . Fuel Cells,2017,17(1):27 − 36.
|
[12] |
LIN L, ZHANG XX, FENG HT, WANG XD. Optimization of a serpentine flow field with variable channel heights and widths for PEM fuel cells[J] . Science China-Technological Sciences,2010,53(2):453 − 460.
|
[13] |
MAHMOUDIMEHR J, DARYADEL A. Influences of feeding conditions and objective function on the optimal design of gas flow channel of a PEM fuel cell[J] . International Journal of Hydrogen Energy,2017,42(36):23141 − 23159.
|
[14] |
NGUYEN PT, BERNING T, DJILALI N. Computational model of a PEM fuel cell with serpentine gas flow channels[J] . Journal of Power Sources,2004,130(1-2):149 − 157.
|
[15] |
ANDERSSON M, BEALE SB, ESPINOZA M, et al. A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells[J] . Applied Energy,2016,180:757 − 778.
|
[16] |
LI WK, ZHANG QL, WANG C, et al. Experimental and numerical analysis of a three-dimensional flow field for PEMFCs[J] . Applied Energy,2017,195:278 − 288.
|
[17] |
KUMAR A, G,REDDY R. Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells[J] . Journal Power Sources,2003,113:11 − 18.
|
[18] |
WANG L. A parametric study of PEM fuel cell performances[J] . International Journal of Hydrogen Energy,2003,28(11):1263 − 1272.
|
[19] |
YANG C, WAN ZM, CHEN X, et al. Geometry optimization of a novel M-like flow field in a proton exchange membrane fuel cell[J] . Energy Conversion and Management,2021,228:113651 − 113661.
|
[20] |
CAI YH, FANG Z, CHEN B, et al. Numerical study on a novel 3D cathode flow field and evaluation criteria for the PEM fuel cell design[J] . Energy,2018,161:28 − 37.
|