Volume 37 Issue 4
Dec.  2023
Turn off MathJax
Article Contents
YANG Shangming, MA Qihua. Dynamic IGBT thermal management strategy based on real-time junction temperature estimation[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 387-396. doi: 10.12299/jsues.22-0374
Citation: YANG Shangming, MA Qihua. Dynamic IGBT thermal management strategy based on real-time junction temperature estimation[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 387-396. doi: 10.12299/jsues.22-0374

Dynamic IGBT thermal management strategy based on real-time junction temperature estimation

doi: 10.12299/jsues.22-0374
  • Received Date: 2022-12-17
  • Publish Date: 2023-12-30
  • Insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) is an important energy transfer and conversion component of electric vehicles. But working under varying conditions for a long time will result in high heat loads, which seriously affect IGBT service life. By establishing IGBT junction temperature estimation model for real-time temperature observation, the relationship between IGBT junction temperature, switch frequency and bus voltage was analyzed. In order to reduce the heat load of IGBT under cyclic conditions, the IGBT junction temperature regional control strategy was proposed. Aiming at controlling the maximum junction temperature and the junction temperature fluctuation, the control region was divided, and the switching frequency and bus voltage were controlled by fuzzy control and PI control respectively. The results show that the maximum junction temperature decreases by 5.1 ℃ and the junction temperature fluctuation of IGBT decreases by 2.6 ℃ on average under new European driving cycle (NEDC) condition, which verified the effectiveness of the control strategy and improved the reliability and operation life of IGBT.
  • loading
  • [1]
    MA M, SUN Z, YE W, et al. Method of junction temperature estimation and over temperature protection used for electric vehicle's IGBT power modules[J] . Microelectronics Reliability,2018,88/89/90:1226 − 1230.
    [2]
    HIRSCHMANN D, TISSEN D, SCHRODER S, et al. Reliability prediction for inverters in hybrid electrical vehicles[J] . IEEE Transactions on Power Electronics,2007,22(6):2511 − 2517. doi: 10.1109/TPEL.2007.909236
    [3]
    周雒维, 王博, 张益, 等. 非平稳工况下功率半导体器件结温管理技术综述[J] . 中国电机工程学报,2018,38(8):2394 − 2407, 2549.
    [4]
    FALCK J, ANDRESEN M, LISERRE M. Active thermal control of IGBT power electronic converters[C]// Proceedings of Conference of the IEEE Industrial Electronics Society. Vienna: IEEE, 2016: 1 − 6.
    [5]
    LIANG W, CASTELLAZZI A. Temperature adaptive driving of power semiconductor devices[J] . IEEE,2010:1110 − 1114.
    [6]
    YU X X, ASHWIN M, WABNG H H, et al. Control of parallel-connected power converters for low-voltage microgrid: Part I: A hybrid control architecture.[J] . IEEE Transactions on Power Electronics,2010,25(12):2962 − 2970. doi: 10.1109/TPEL.2010.2087393
    [7]
    黄守道, 陈叶宇, 刘平, 等. 基于频段导向的PWM逆变器主动热管理控制[J] . 电力自动化设备,2017,37(5):34 − 39.
    [8]
    BROECK C, RUPPERT L A, LORENZ R D, et al. Active thermal cycle reduction of power modules via gate resistance manipulation[C]//Proceedings of 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). San Antonio: IEEE, 2018: 1−6.
    [9]
    XIONG D, LI G, SUN P, et al. A hybrid modulation method for lifetime extension of power semiconductors in wind power converters[C]//Proceedings of 2015 IEEE Applied Power Electronics Conference and Exposition (APEC). Charlotte: IEEE, 2015: 2565−2570.
    [10]
    魏云海, 陈民铀, 赖伟, 等. 基于IGBT结温波动平滑控制的主动热管理方法综述[J] . 电工技术学报,2022,37(6):1415 − 1430.
    [11]
    毕长飞. 大功率直驱风电机组变流器的功率器件热负荷分析[J] . 机械设计与制造,2018(9):236 − 239.
    [12]
    张益. 变流器中功率开关器件结温平滑研究[D]. 重庆: 重庆大学, 2018.
    [13]
    WANG X, WANG X, XUN Y. An optimal DC bus voltage control method to improve the junction temperature of IGBTs in low speed operations of traction applications[C]//Proceedings of Power Electronics Conference. Auckland: IEEE, 2016: 1−6.
    [14]
    周朋飞, 陈权, 李国丽. T型三电平逆变器功率器件结温控制研究[J] . 电气传动,2019,49(4):38 − 42.
    [15]
    李夔宁, 邓廷婷, 谢翌, 等. 基于熵分析的电动汽车电机及电机控制器热管理系统研究[J] . 汽车实用技术,2020(8):9 − 13.
    [16]
    MURDOCK D A, RAMOS J J, CONNORS J J, et al. Active thermal control of power electronics modules[J] . IEEE Transactions on Industry Applications,2006,42(2):552 − 558. doi: 10.1109/TIA.2005.863905
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views (243) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return