| Citation: | LIU Wenfang, ZHOU Naying, ZHANG Hongxing, SUN Xin. Effective potential and stable circular orbits in magnetized Schwarzschild spacetime[J]. Journal of Shanghai University of Engineering Science, 2023, 37(3): 247-254, 334. doi: 10.12299/jsues.22-0338 | 
 
	                | [1] | EINSTEIN A. Sitzungsberichte der köiglich preuschen $ \beta $ akademie der wissenschaften [M]. Berlin: Deutsche Akademie der Wissenschaften zu Berlin, 1915: 425. | 
| [2] | EINSTEIN A, SITZUNGSBER K. Eine neue formale deutung der maxwellschen feldgleichungen der elektrodynamik [M]. New York: Sons John Wiley and Sons, 1916: 688. | 
| [3] | EATOUGH R P, FALCKE H, KARUPPUSAMY R. A strong magnetic field around the supermassive black hole at the centre of the Galaxy[J] . Nature,2013,501:391 − 394. doi:  10.1038/nature12499 | 
| [4] | ZHANG H X, ZHOU N Y, LIU W F, et al. Charged particle motions near non-Schwarzschild black holes with external magnetic fields in modified theories of gravity[J] . Universe,2021,7(12):488. doi:  10.3390/universe7120488 | 
| [5] | SUN W, WANG Y, LIU F Y, et al. Applying explicit symplectic integrator to study chaos of charged particles around magnetized Kerr black hole[J] . European Physical Journal C,2021,81:785. | 
| [6] | LI D, WANG Y, DENG C, et al. Coherent post-Newtonian Lagrangian equations of motion[J] . European Physical Journal Plus,2020,135:390. doi:  10.1140/epjp/s13360-020-00407-7 | 
| [7] | WU X, ZHANG H. Chaotic dynamics in a superposed Weyl spacetime[J] . The Astrophysical Journal,2006,652(2):1466. doi:  10.1086/508129 | 
| [8] | WANG Y, SUN W, LIU F Y, et al. Construction of explicit symplectic integrators in general relativity. I. Schwarzschild black holes[J] . The Astrophysical Journal,2021,907(2):66. doi:  10.3847/1538-4357/abcb8d | 
| [9] | WANG Y, SUN W, LIU F Y, et al. Construction of explicit symplectic integrators in general relativity. III. Reissner–Nordström-(anti)-de sitter black holes[J] . The Astrophysical Journal Supplement Series,2021,254(1):8. doi:  10.3847/1538-4365/abf116 | 
| [10] | WU X, WANG Y, SUN W, et al. Construction of explicit symplectic integrators in general relativity. IV. Kerr black holes[J] . The Astrophysical Journal,2021,914(1):63. doi:  10.3847/1538-4357/abfc45 | 
| [11] | ZHOU N Y, ZHANG H X, LIU W F, et al. A note on the construction of explicit symplectic integrators for Schwarzschild spacetimes[J] . The Astrophysical Journal,2022,927(2):160. doi:  10.3847/1538-4357/ac497f | 
| [12] | YANG D Q, CAO W F, ZHOU N Y, et al. Chaos in a magnetized modified gravity Schwarzschild spacetime[J] . Universe,2022,8(6):320. doi:  10.3390/universe8060320 | 
| [13] | HU A R, HANG G Q. Dynamics of charged particles in the magnetized γ spacetime[J] . European Physical Journal Plus,2021,136:1210. doi:  10.1140/epjp/s13360-021-02194-1 | 
| [14] | SUN X, WU X, WANG Y, et al. Dynamics of charged particles moving around Kerr black hole with inductive charge and external magnetic field[J] . Universe,2021,7:410. doi:  10.3390/universe7110410 | 
| [15] | YI M, WU X. Dynamics of charged particles around a magnetically deformed Schwarzschild black hole[J] . Physica Scripta,2020,95:085008. doi:  10.1088/1402-4896/aba4c2 | 
| [16] | NARAYAN R, JOHNSON M D, GAMMIE C F. The shadow of a spherically accreting black hole[J] . The Astrophysical Journal Letters,2019,885:L33. doi:  10.3847/2041-8213/ab518c | 
| [17] | GRALLA S E, HOLZ D E, WALD R M. Black hole shadows, photon rings, and lensing rings[J] . Physical Review D,2019,100:024018. doi:  10.1103/PhysRevD.100.024018 | 
| [18] | PENG J, GUO M Y, FENG X H. Influence of quantum correction on the black hole shadows, photon rings and lensing rings[J] . Chinese Physics C,2021,45:085103. | 
| [19] | HU S Y, DENG C, LI D, et al. Observational signatures of Schwarzschild-MOG black holes in scalar -tensor -vector gravity: shadows and rings with different accretions[J] . European Physical Journal C,2022,82:885. doi:  10.1140/epjc/s10052-022-10868-y | 
| [20] | ZHANG H X, ZHOU N Y, LIU W F, et al. Equivalence between two charged black holes in dynamics of orbits outside the event horizons[J] . General Relativity and Gravitation,2022,54:110. doi:  10.1007/s10714-022-02998-1 | 
| [21] | CAO W F, LIU W F, WU X. Integrability of Kerr-Newman spacetime with cloud strings, quintessence and electromagnetic field[J] . Physical Review D,2022,105:124039. doi:  10.1103/PhysRevD.105.124039 | 
| [22] | KOVÁŘ J, SLANÝ P, CREMASCHINI C, et al. Electrically charged matter in rigid rotation around magnetized black hole[J] . Physical Review D,2014,90:044029. doi:  10.1103/PhysRevD.90.044029 | 
| [23] | HAWLEY J F, BALBUS S A. A powerful local shear instability in weakly magnetized disks. I-Linear analysis. II-Nonlinear evolution[J] . The Astrophysical Journal,1991,376:223. doi:  10.1086/170271 | 
| [24] | CAEMASCHINI C, STUCHLÍK Z. Magnetic loop generation by collisionless gravitationally bound plasmas in axisymmetric tori[J] . Physical Review E,2013,87:043113. doi:  10.1103/PhysRevE.87.043113 | 
| [25] | KOLOŠ. Quasi-harmonic oscillatory motion of charged particles around a Schwarzschild black hole immersed in a uniform magnetic field[J] . Classical Quantum Gravity,2015,32:165009. doi:  10.1088/0264-9381/32/16/165009 | 
| [26] | WANG Y, SUN W, LIU F Y, et al. Construction of explicit symplectic integrators in general relativity. II. Reissner–Nordström black holes[J] . The Astrophysical Journal,2021,909(1):22. doi:  10.3847/1538-4357/abd701 | 
| [27] | Wald R M. General Relativity [M]. Chicago: University of Chicago Press, 1984: 317. | 
