Volume 37 Issue 1
Mar.  2023
Turn off MathJax
Article Contents
YAN Jinbiao, WANG Sha, ZHANG Huarong. Research progress of carbon deposition resistance of catalyst for dry reforming of methane to hydrogen[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 1-6, 40. doi: 10.12299/jsues.22-0093
Citation: YAN Jinbiao, WANG Sha, ZHANG Huarong. Research progress of carbon deposition resistance of catalyst for dry reforming of methane to hydrogen[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 1-6, 40. doi: 10.12299/jsues.22-0093

Research progress of carbon deposition resistance of catalyst for dry reforming of methane to hydrogen

doi: 10.12299/jsues.22-0093
  • Received Date: 2022-04-21
  • Publish Date: 2023-03-31
  • Among modern industrial hydrogen production technologies, methane reforming for hydrogen production has unique advantages in rich reactant sources and high availability, especially dry reforming of methane (DRM) technology, which uses methane and carbon dioxide as raw materials and has both environmental and economic benefits. Carbon deposition on catalyst is one of the main problems affecting the development of DRM technology. To design high-performance catalysts, current research mainly focuses on the active components, supports, and promoters. This article discusses in detail the effects of interaction between active components and supports, active metal particle size, basicity, oxygen storage capacity, and carbon deposition type on the carbon deposition resistance of DRM catalysts. The results indicate that strong interactions between active metals and supports, synergistic effects of bimetallic catalysts, and smaller active metal particles can reduce carbon deposition and improve catalyst activity. Increasing oxygen storage capacity can promote carbon removal. The type and amount of carbon deposition are closely related to the support material, and moderate support basicity can promote CO2 activation, thereby improving the carbon deposition resistance of the catalyst. This article provides a reference for the design and optimization of DRM catalysts.
  • loading
  • [1]
    曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J] . 化学进展,2021,33(12):2215 − 2244.
    [2]
    刘勇, 李江华, 李思梦, 等. CH4/CO2等离子体重整反应的研究进展[J] . 天然气化工,2017,42(5):120 − 125.
    [3]
    TURAP Y S, WANG I W, FU T T, et al. Co–Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane[J] . International Journal of Hydrogen Energy,2020,45(11):6538 − 6548. doi: 10.1016/j.ijhydene.2019.12.223
    [4]
    LE SACHÉ E, PASTOR-PÉREZ L, WATSON D, et al. Ni stabilised on inorganic complex structures: Superior catalysts for chemical CO2 recycling via dry reforming of methane[J] . Applied Catalysis B: Environmental,2018,236:458 − 465. doi: 10.1016/j.apcatb.2018.05.051
    [5]
    KUMAR R, KUMAR K, PANT K K, et al. Tuning the metal-support interaction of methane tri-reforming catalysts for industrial flue gas utilization[J] . International Journal of Hydrogen Energy,2020,45(3):1911 − 1929. doi: 10.1016/j.ijhydene.2019.11.111
    [6]
    RUCKENSTEIN E, WANG H Y. Carbon dioxide reforming of methane to synthesis gas over supported cobalt catalysts[J] . Applied Catalysis A: General,2000,204(2):257 − 263. doi: 10.1016/S0926-860X(00)00674-8
    [7]
    BU K K, KUBOON S C, DENG J, et al. Methane dry reforming over boron nitride interface-confined and LDHs-derived Ni catalysts[J] . Applied Catalysis B: Environmental,2019,252:86 − 97. doi: 10.1016/j.apcatb.2019.04.007
    [8]
    JANG W J, JEONG D W, SHIM J O, et al. Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases[J] . Renewable Energy,2015,79:91 − 95. doi: 10.1016/j.renene.2014.08.032
    [9]
    ARAMOUNI N A K, TOUMA J G, TARBOUSH B A, et al. Catalyst design for dry reforming of methane: Analysis review[J] . Renewable and Sustainable Energy Reviews,2018,82:2570 − 2585. doi: 10.1016/j.rser.2017.09.076
    [10]
    ZHANG L J, WANG F G, ZHU J Y, et al. CO2 reforming with methane reaction over Ni@SiO2 catalysts coupled by size effect and metal-support interaction[J] . Fuel,2019,256:115954. doi: 10.1016/j.fuel.2019.115954
    [11]
    DAS S, P´EREZ-RAMÍREZ J, GONG J L, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J] . Chemical Society Reviews,2020,49(10):2937 − 3004. doi: 10.1039/C9CS00713J
    [12]
    KIM W Y, JANG J S, RA E C, et al. Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane[J] . Applied Catalysis A: General,2019,575:198 − 203. doi: 10.1016/j.apcata.2019.02.029
    [13]
    ARAMOUNI N A K, ZEAITER J, KWAPINSKI W, et al. Eclectic trimetallic Ni–Co–Ru catalyst for the dry reforming of methane[J] . International Journal of Hydrogen Energy,2020,45(35):17153 − 17163. doi: 10.1016/j.ijhydene.2020.04.261
    [14]
    WU H J, PANTALEO G, PAROLA V L, et al. Bi-and trimetallic Ni catalysts over Al2O3 and Al2O3−MOx (M= Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects[J] . Applied Catalysis B: Environmental,2014,156:350 − 361.
    [15]
    KAWI S, KATHIRASER Y, NI J, et al. Progress in synthesis of highly active and stable nickel‐based catalysts for carbon dioxide reforming of methane[J] . ChemSusChem,2015,8(21):3556 − 3575. doi: 10.1002/cssc.201500390
    [16]
    SONG K, LU M, XU S, et al. Effect of alloy composition on catalytic performance and coke-resistance property of Ni−Cu/Mg(Al)O catalysts for dry reforming of methane[J] . Applied Catalysis B: Environmental,2018,239:324 − 333. doi: 10.1016/j.apcatb.2018.08.023
    [17]
    HORLYCK J, LAWREY C, LOVELL E C, et al. Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane[J] . Chemical Engineering Journal,2018,352:572 − 580. doi: 10.1016/j.cej.2018.07.009
    [18]
    ZHANG J G, WANG H, DALAI A K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane[J] . Journal of Catalysis,2007,249(2):300 − 310. doi: 10.1016/j.jcat.2007.05.004
    [19]
    THEOFANIDIS S A, GALVITA V V, POELMAN H, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe[J] . Acs Catalysis,2015,5(5):3028 − 3039. doi: 10.1021/acscatal.5b00357
    [20]
    GUHAROY U, SACHÉ E L, CAI Q, et al. Understanding the role of Ni-Sn interaction to design highly effective CO2 conversion catalysts for dry reforming of methane[J] . Journal of CO2 Utilization,2018,27:1 − 10. doi: 10.1016/j.jcou.2018.06.024
    [21]
    NÉMETH M, SÁFRÁN G, HORVÁTH A, et al. Hindered methane decomposition on a coke-resistant Ni-In/SiO2 dry reforming catalyst[J] . Catalysis Communications,2019,118:56 − 59. doi: 10.1016/j.catcom.2018.10.003
    [22]
    XIE Z H, YAN B H, KATTEL S, et al. Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity[J] . Applied Catalysis B: Environmental,2018,236:280 − 293. doi: 10.1016/j.apcatb.2018.05.035
    [23]
    HAN J W, PARK J S, CHOI M S, et al. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane[J] . Appl ied Catal ysis B: Environ mental,2017,203:625 − 632. doi: 10.1016/j.apcatb.2016.10.069
    [24]
    WANG J, ZHANG J, ZHONG H X, et al. Effect of support morphology and size of nickel metal ions on hydrogen production from methane steam reforming[J] . Chemical Physics Letters,2020,746:137291. doi: 10.1016/j.cplett.2020.137291
    [25]
    KANG D W, YU J, MA W H, et al. Synthesis of Cu/Ni-La0.7Sr0.3Cr0.5Mn0.5O3-δ and its catalytic performance on dry methane reforming[J] . Journal of Rare Earths,2019,37:585 − 593. doi: 10.1016/j.jre.2018.10.016
    [26]
    TIAN J Q, LI H C, ZENG X, et al. Facile immobilization of Ni nanoparticles into mesoporous MCM-41 channels for efficient methane dry reforming[J] . Chinese Journal of Catalysis,2019,40:1395 − 1404. doi: 10.1016/S1872-2067(19)63403-0
    [27]
    BALLARINI A, BASILE F, BENITO P, et al. Platinum supported on alkaline and alkaline earth metal-doped alumina as catalysts for dry reforming and partial oxidation of methane[J] . Applied Catalysis A: General,2012,433:1 − 11.
    [28]
    SENGUPTA S, DEO G. Modifying alumina with CaO or MgO in supported Ni and Ni-Co catalysts and its effect on dry reforming of CH4[J] . Journal of CO2 Utilization,2015,10:67 − 77. doi: 10.1016/j.jcou.2015.04.003
    [29]
    DAMA S, GHODKE S R, BOBADE R, et al. Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane[J] . Applied Catalysis B: Environmental,2018,224:146 − 158. doi: 10.1016/j.apcatb.2017.10.048
    [30]
    ZHU J Q, PENG X X, YAO L, et al. Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience[J] . International Journal of Hydrogen Energy,2013,38(1):117 − 126. doi: 10.1016/j.ijhydene.2012.07.136
    [31]
    WANG F G, XU L L, YANG J, et al. Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction[J] . Catalysis Today,2017,281:295 − 303. doi: 10.1016/j.cattod.2016.03.055
    [32]
    CHEIN R Y, FUNG W Y. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts[J] . International Journal of Hydrogen Energy,2019,44(28):14303 − 14315. doi: 10.1016/j.ijhydene.2019.01.113
    [33]
    BIAN Z F, WANG Z G, JIANG B, et al. A review on perovskite catalysts for reforming of methane to hydrogen production[J] . Renewable and Sustainable Energy Reviews,2020,134:110291. doi: 10.1016/j.rser.2020.110291
    [34]
    PICHAS C, POMONIS P, PETRAKIS D, et al. Kinetic study of the catalytic dry reforming of CH4 with CO2 over La2-xSrxNiO4 perovskite-type oxides[J] . Applied Catalysis A: General,2010,386(1-2):116 − 123. doi: 10.1016/j.apcata.2010.07.043
    [35]
    SUTTHIUMPORN K, KAWI S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression[J] . International Journal of Hydrogen Energy,2011,36(22):14435 − 14446. doi: 10.1016/j.ijhydene.2011.08.022
    [36]
    XU J K, ZHOU W, WANG J H, et al. Characterization and analysis of carbon deposited during the dry reforming of methane over Ni/La2O3/Al2O3 catalysts[J] . Chinese Journal of Catalysis,2009,30(11):1076 − 1084. doi: 10.1016/S1872-2067(08)60139-4
    [37]
    GUO J J, LOU H, ZHENG X M. The deposition of coke from methane on a Ni/MgAl2O4 catalyst[J] . Carbon,2007,45(6):1314 − 1321. doi: 10.1016/j.carbon.2007.01.011
    [38]
    YAO Z W, JIANG J, ZHAO Y, et al. Insights into the deactivation mechanism of metal carbide catalysts for dry reforming of methane via comparison of nickel-modified molybdenum and tungsten carbides[J] . RSC advances,2016,6(24):19944 − 19951. doi: 10.1039/C5RA24815A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (588) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return