Volume 36 Issue 2
Jun.  2022
Turn off MathJax
Article Contents
BAO Liang, DENG Shengxiang, KUANG Jianghong. Structural optimization of cathode steel bar for 400 kA aluminum electrolytic cell[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 124-129, 188. doi: 10.12299/jsues.21-0184
Citation: BAO Liang, DENG Shengxiang, KUANG Jianghong. Structural optimization of cathode steel bar for 400 kA aluminum electrolytic cell[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 124-129, 188. doi: 10.12299/jsues.21-0184

Structural optimization of cathode steel bar for 400 kA aluminum electrolytic cell

doi: 10.12299/jsues.21-0184
  • Received Date: 2021-09-07
    Available Online: 2022-11-16
  • Publish Date: 2022-06-30
  • Finite element simulation method was used to simulate the electric field of 400 kA aluminum electrolytic cell under the traditional cathode steel bar structure and the special-shaped cathode steel bar structure, which mainly included the cathode voltage drop and the level current of aluminum liquid. An improved structure of cathode steel bar was proposed by analyzing the abnormal structure of the cathode steel bar. The cathode steel bar has the characteristics of bulge and extension. The result shows that the improved cathode steel bar can further reduce the voltage and level current of aluminum electrolytic cell, thus improving the current efficiency of electrolytic cell, reducing the energy consumption of a single cell by about 33.6 kW•h, and improving the stability of electrolytic aluminum.

  • loading
  • [1]
    张琨, 曹曦. 超低能耗铝电解技术研究和经济效益分析[J] . 有色冶金节能,2020,36(2):22 − 25.
    [2]
    边韩国. 电解槽寿命的影响因素[J] . 中国有色金属,2014(8):60 − 61.
    [3]
    YANG S, LI J, XU Y J, et al. Optimization of horizontal current in metal pad by using cathode with heightened collector bars in aluminum reduction cell[J] . The Chinese Journal of Nonferrous Metals,2012,22(10):2951 − 2958.
    [4]
    BAN Y G , LIU J, MAO Y, et al. Cathode structure optimization research for aluminum reduction cell[M]//MARTIN O. Light metals 2018. Cham: Springer, 2018: 1345 − 1352. DOI:10.1007/978-3-319-72284-9_176.
    [5]
    罗伟林. 330KA铝电解槽生产过程中电流效率的提升研究[J] . 中国金属通报,2019(2):16 − 17. doi: 10.3969/j.issn.1672-1667.2019.02.009
    [6]
    王俊伟, 周云峰, 方斌, 等. 降低水平电流减少铝液动态波动铝电解节能技术研究[J] . 有色金属(冶炼部分),2020(4):26 − 29.
    [7]
    WANG Q, LI B K, WANG F, et al. Magnetohydrodynamic model coupling multiphase flow in aluminum reduction cell with innovative cathode protrusion[M]//SADLER B A. Light Metals 2013. Cham: Springer, 2013: 615 − 619.
    [8]
    INGO B, RINGSBY O B. Composite collector bar: US8273224 B2[P]. 2012-05-17.
    [9]
    李劫, 张红亮, 徐宇杰, 等. 一种可控调节铝液中水平电流的铝电解槽阴极结构: CN201110089796.9[P]. 2011-09-14.
    [10]
    李劼, 程迎军, 赖延清, 等. 大型预焙铝电解槽电、热场的有限元计算[J] . 计算物理,2003,20(4):351 − 355. doi: 10.3969/j.issn.1001-246X.2003.04.013
    [11]
    陈喜平, 梁学民, 郭龙. 一种铝电解阴极炭块与阴极钢棒组装结构: CN201320325426.5[P]. 2013-12-04.
    [12]
    SONG Y, FENG N X, PENG J P, et al. The Influence of Cathode Shape on Current Density and Metal Heave in 300 kA Aluminum Reduction Cell[M]//HYLAND M. Light Metals 2015. Cham: Springer, 2015: 827 − 830.
    [13]
    曾水平, 王沙沙, 王蓉娟. 300 kA预焙阳极铝电解槽物理场的计算机仿真[J] . 系统仿真学报,2015,27(5):935 − 942.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (447) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return