留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCU-Net网络的肺肿瘤分割

蔡浩 李朋 宫晓梅 王娆芬

蔡浩, 李朋, 宫晓梅, 王娆芬. 基于PCU-Net网络的肺肿瘤分割[J]. 上海工程技术大学学报, 2024, 38(4): 444-450. doi: 10.12299/jsues.24-0012
引用本文: 蔡浩, 李朋, 宫晓梅, 王娆芬. 基于PCU-Net网络的肺肿瘤分割[J]. 上海工程技术大学学报, 2024, 38(4): 444-450. doi: 10.12299/jsues.24-0012
CAI Hao, LI Peng, GONG Xiaomei, WANG Raofen. Segmentation of lung tumors based on PCU-Net[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 444-450. doi: 10.12299/jsues.24-0012
Citation: CAI Hao, LI Peng, GONG Xiaomei, WANG Raofen. Segmentation of lung tumors based on PCU-Net[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 444-450. doi: 10.12299/jsues.24-0012

基于PCU-Net网络的肺肿瘤分割

doi: 10.12299/jsues.24-0012
基金项目: 国家自然科学基金资助(62173222);上海市科委科技创新行动计划资助(20Y11913600);申康三年行动计划肺科培育项目资助(SKPY2021006)
详细信息
    作者简介:

    蔡浩:蔡 浩(1995 − ),男,硕士生,研究方向为计算机视觉、医学图像处理等。E-mail:765731294@qq.com

    通讯作者:

    王娆芬(1983 − ),女,副教授,博士,研究方向为医学图像处理、脑机接口等。E-mail:rfwangsues@163.com

  • 中图分类号: TP391

Segmentation of lung tumors based on PCU-Net

  • 摘要: 深度学习技术可辅助医生进行肿瘤的精准分割。但肺肿瘤与周围组织界限不清楚,现有方法存在分割边缘模糊、模型参数量大等问题。提出一种对轻量级肺肿瘤分割的部分卷积坐标注意力U-net(partial convolution coordinate attention U-net,PCU-Net)算法。引入部分卷积降低模型参数量,同时提升模型特征提取的能力。在U-Net跳跃链接处添加坐标注意力模块,使网络更精准获取肿瘤的位置信息,提高分割精度。研究结果表明,改进的PCU-Net在参数量减少58.57%的同时,Dice值、IoU和Recall分别提高4.22%、4.26%和6.82%。将PCU-Net模型与其他语义分割模型对比显示,PCU-Net的Dice值比其他模型高出3~6百分点。
  • 图  1  模型结构示意图

    Figure  1.  Model structure diagram

    图  2  普通卷积与部分卷积模块示意图

    Figure  2.  Schematic diagram of ordinary convolution and partial convolution modules

    图  3  坐标注意力机制结构图

    Figure  3.  Structure diagram of coordinate attention mechanism

    图  4  CT图像及对应标签

    Figure  4.  CT images and corresponding labels

    图  5  不同模型在肺肿瘤数据集上的分割结果对比

    Figure  5.  Comparison of segmentation results of different models on lung tumor datasets

    图  6  添加不同模块在肺肿瘤数据集上的分割结果对比

    Figure  6.  Comparison of segmentation results by adding different modules on the lung tumor dataset

    图  7  Dice与参数量的关系图

    Figure  7.  Diagram of dice and parameter quantity

    表  1  不同算法的分割结果

    Table  1.   Segmentation results of different algorithms %

    模型 Dice IoU Recall
    U-Net 68.94 57.65 69.53
    Attention U-Net 68.71 57.29 72.38
    Mobile U-Net 66.20 55.82 67.49
    FCN 68.85 57.67 68.60
    PCU-Net 73.16 61.91 76.35
    下载: 导出CSV

    表  2  消融试验

    Table  2.   Ablation experiment

    模型 Dice IoU Recall
    U-Net+PConv 71.84 60.44 74.39
    U-Net+CA 71.21 59.31 75.60
    PCU-Net 73.16 61.91 76.35
    下载: 导出CSV
  • [1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J] . CA: A Cancer Journal for Clinicians,2021,71(3):209 − 249. doi: 10.3322/caac.21660
    [2] SOLTANI-NABIPOUR J, KHORSHIDI A, NOORIAN B. Lung tumor segmentation using improved region growing algorithm[J] . Nuclear Engineering and Technology,2020,52(10):2313 − 2319. doi: 10.1016/j.net.2020.03.011
    [3] RAKESH S, MAHESH S. Nodule segmentation of lung CT image for medical applications[J] . Global Transitions Proceedings,2021,2(1):80 − 83. doi: 10.1016/j.gltp.2021.01.011
    [4] VORONTSOV E, ABI-JAOUDEH N, KADOURY S. Metastatic liver tumor segmentation using texture-based omni-directional deformable surface models[C] //proceedings of the 6th International Workshop ABDI 2014. Cham: Springer, 2014: 74−83.
    [5] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015, 39(4): 640−651.
    [6] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C] //Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Munich: Springer International Publishing, 2015: 234−241.
    [7] MILLETARI F, NAVAB N, AHMAD SA. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C] //Proceedings of 2016 the Fourth International Conference on 3D Vision (3DV). Piscataway: IEEE, 2016: 565−571.
    [8] OKTAY O, SCHLEMPER J, FOLGOC LL, et al. Attention U-net: Learning where to look for the pancreas[C] //Proceedings of IEEE on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018.
    [9] ZHOU Z, SIDDIQUEE M M, TAJBAKHSH N, et al. Unet ++: Redesigning skip connections to exploit multiscale features in image segmentation[J] . IEEE Transactions on Medical Imaging,2019,39(6):1856 − 1867.
    [10] CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[J] . 2021. DOI: 10.48550/arXiv.2105.05537.
    [11] ZHOU T, DONG Y, LU H, et al. APU-Net: An attention mechanism parallel U-Net for lung tumor segmentation[J] . BioMed Research International , 2022, 2022, 5303651.
    [12] JIANG J, HU Y C, LIU C J, et al. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images[J] . IEEE Transactions on Medical Imaging,2019,38(1):134 − 144. doi: 10.1109/TMI.2018.2857800
    [13] HOSSAIN S, NAJEEB S, SHAHRIYAR A, et al. A pipeline for lung tumor detection and segmentation from CT scans using dilated convolutional neural networks[C] //Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton: IEEE, 2019: 1348−1352.
    [14] CHEN J, KAO S, HE H, et al. Run, don't walk: Chasing higher FLOPs for faster neural networks[C] //Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 12021−12031.
    [15] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C] //Proceedings of Coordinate attention for efficient mobile network design. Nashville: IEEE, 2021: 13713−13722.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-12
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回