留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应频谱损失生成对抗网络的滚动轴承故障诊断方法

何佳兴 陈兴杰 吕照民

何佳兴, 陈兴杰, 吕照民. 基于自适应频谱损失生成对抗网络的滚动轴承故障诊断方法[J]. 上海工程技术大学学报, 2024, 38(4): 406-413. doi: 10.12299/jsues.23-0254
引用本文: 何佳兴, 陈兴杰, 吕照民. 基于自适应频谱损失生成对抗网络的滚动轴承故障诊断方法[J]. 上海工程技术大学学报, 2024, 38(4): 406-413. doi: 10.12299/jsues.23-0254
HE Jiaxing, CHEN Xingjie, LYU Zhaomin. Rolling bearing fault diagnosis method based on adaptive spectral loss generative adversarial networks[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 406-413. doi: 10.12299/jsues.23-0254
Citation: HE Jiaxing, CHEN Xingjie, LYU Zhaomin. Rolling bearing fault diagnosis method based on adaptive spectral loss generative adversarial networks[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 406-413. doi: 10.12299/jsues.23-0254

基于自适应频谱损失生成对抗网络的滚动轴承故障诊断方法

doi: 10.12299/jsues.23-0254
基金项目: 国家自然科学基金面上项目资助(51975347)
详细信息
    作者简介:

    何佳兴(1998 − ),男,硕士生,研究方向为轴承故障诊断。E-mail:jia_he1998@163.com

    通讯作者:

    陈兴杰(1975 − ),男,副教授,研究方向为轨道及车辆检测方面的信号检测和图像处理。E-mail:chenxingjie@sues.edu.cn

  • 中图分类号: TP306+.3;TH133.33

Rolling bearing fault diagnosis method based on adaptive spectral loss generative adversarial networks

  • 摘要: 提出一种基于自适应频谱损失生成对抗网络的轴承故障诊断方法。首先,引入谱距离度量生成数据与真实数据间的频域差距。其次,在生成器损失中加入自适应频谱损失降低简单频率分量的权重,从而自适应地关注难以合成的频率分量,以更好地指导生成对抗网络,生成与真实数据更相似的假样本。利用凯斯西储大学轴承数据集进行验证,并与其他方法相比。结果表明,自适应频谱损失生成对抗网络能生成质量更高的样本,并显著提高样本不平衡条件下的故障识别率。
  • 图  1  生成对抗网络结构图

    Figure  1.  Structure diagram of GAN

    图  2  两向量间的谱距离

    Figure  2.  Spectral distance between two vectors

    图  3  所提方法流程图

    Figure  3.  Flowchart of proposed method

    图  4  生成图像与真实图像的对比图

    Figure  4.  Comparison between generated image and real image

    图  5  不同生成模型的生成效果对比图

    Figure  5.  Comparison of generation results of different generation models

    图  6  不同模型的混淆矩阵

    Figure  6.  Confusion matrix of different models

    表  1  轴承数据集详细信息

    Table  1.   Bearing dataset details

    故障位置 故障深度/mm 样本数(训练集/测试集) 类别名称 标签
    100/100 正常 0
    滚动体 0.178 20/100 滚动体故障1 1
    0.356 20/100 滚动体故障2 2
    0.534 20/100 滚动体故障3 3
    内圈 0.178 20/100 内圈故障1 4
    0.356 20/100 内圈故障2 5
    0.534 20/100 内圈故障3 6
    外圈 0.178 20/100 外圈故障1 7
    0.356 20/100 外圈故障2 8
    0.534 20/100 外圈故障3 9
    下载: 导出CSV

    表  2  ASLGAN生成模型与CNN故障分类模型架构

    Table  2.   Architectures of ASLGAN generative model and CNN fault classification model

    模型名称 模型结构组成 主要参数 输出尺寸
    生成器 Input 100 × 1 × 1
    ConvTranspose_2D + BN + ReLu 100,512,4,1,0 512 × 4 × 4
    ConvTranspose_2D + BN + ReLu 512,256,4,2,1 256 × 8 × 8
    ConvTranspose_2D + BN + ReLu 256,128,4,2,1 128 × 16 × 16
    ConvTranspose_2D + BN + ReLu 128,64,4,2,1 64 × 32 × 32
    ConvTranspose_2D + Tanh 64,3,4,2,1 3 × 64 × 64
    判别器 Input 3 × 64 × 64
    Conv_2D + LeakReLu 3,64,4,2,1 64 × 32 × 32
    Conv_2D + BN + LeakReLu 64,128,4,2,1 128 × 16 × 16
    Conv_2D + BN + LeakReLu 128,256,4,2,1 256 × 8 × 8
    Conv_2D + BN + LeakReLu 256,512,4,2,1 512 × 4 × 4
    Conv_2D 512,1,4,1,0 1 × 1 × 1
    CNN分类器 Input 3 × 64 × 64
    Conv_2D + ReLu + MaxPool 3,16,5,1,0 16 × 60 × 60
    Conv_2D + ReLu + MaxPool 16,32,5,1,0 32 × 26 × 26
    Conv_2D + ReLu + MaxPool 32,64,5,1,0 64 × 9 × 9
    Flatten 1024
    Linear + ReLu 1024,120 120
    Linear + ReLu 120,10 10
    下载: 导出CSV

    表  3  生成图像与真实图像的PSNR值对比结果

    Table  3.   Comparison results of PSNR values of generated image and real image

    方法滚动体故障内圈故障外圈故障平均值
    123123123
    GAN27.99227.97127.98027.90527.91628.03027.98327.88428.05327.968
    DCGAN28.27528.21027.76228.59928.58128.40228.39227.73828.25328.246
    WGAN28.77228.61228.77629.44828.70929.14429.35528.72628.62928.908
    ASLGAN29.05228.86529.02729.61428.88029.25829.57628.99428.85029.124
    下载: 导出CSV

    表  4  生成图像与真实图像的SSIM值对比结果

    Table  4.   Comparison results of SSIM values of generated image and real image

    方法滚动体故障内圈故障外圈故障平均值
    123123123
    GAN0.5030.5040.5380.5810.4520.5410.6230.4680.5050.524
    DCGAN0.5830.4730.1570.6580.4350.4690.6660.1650.4910.455
    WGAN0.4950.4590.5040.6520.4150.5710.6920.4840.4720.527
    ASLGAN0.5410.5280.5500.6740.4530.5890.7060.5730.5120.569
    下载: 导出CSV

    表  5  生成图像与真实图像的LPIPS值对比结果

    Table  5.   Comparison results of LPIPS values of generated image and real image

    方法滚动体故障内圈故障外圈故障平均值
    123123123
    GAN15.23815.28015.22015.41215.43515.22915.16915.60515.31715.323
    DCGAN14.62815.09416.49314.25714.85614.66314.44816.52915.21715.132
    WGAN14.50014.80514.51013.88414.82814.12914.02014.58714.98914.473
    ASLGAN14.27414.56714.29813.79014.67014.05013.85514.30114.75214.284
    下载: 导出CSV
  • [1] FAN J G, YUAN X F, MIAO Z M, et al. Full attention Wasserstein GAN with gradient normalization for fault diagnosis under imbalanced data[J] . IEEE Transactions on Instrumentation and Measurement,2022,71:1 − 16.
    [2] LEI Y G, YANG B, JIANG X W, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap[J] . Mechanical Systems and Signal Processing,2020,138:106587. doi: 10.1016/j.ymssp.2019.106587
    [3] 郭玉荣, 茅健, 赵嫚. 基于CNN与注意力BiLSTM的轴承剩余使用寿命预测方法[J] . 上海工程技术大学学报,2023,37(1):96 − 104.
    [4] SHAO H D, XIA M, WAN J F, et al. Modified stacked autoencoder using adaptive morlet wavelet for intelligent fault diagnosis of rotating machinery[J] . IEEE/ASME Transactions on Mechatronics,2022,27(1):24 − 33. doi: 10.1109/TMECH.2021.3058061
    [5] JIA F, LEI Y G, LIN J, et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J] . Mechanical Systems and Signal Processing,2016,72/73:303 − 315. doi: 10.1016/j.ymssp.2015.10.025
    [6] SHAO H D, JIANG H K, ZHANG H Z, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J] . Mechanical Systems and Signal Processing,2018,100:743 − 765. doi: 10.1016/j.ymssp.2017.08.002
    [7] ZHANG T C, CHEN J L, LI F D, et al. Intelligent fault diagnosis of machines with small & imbalanced data: a state-of-the-art review and possible extensions[J] . ISA Transactions,2022,119:152 − 171. doi: 10.1016/j.isatra.2021.02.042
    [8] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C] //Proceedings of Conference on Neural Information Processing Systems. New York: ACM, 2020: 139−144.
    [9] ZHANG T C, CHEN J L, LI F D, et al. A small sample focused intelligent fault diagnosis scheme of machines via multi-modules learning with gradient penalized generative adversarial networks[J] . IEEE Transactions on Industrial Electronics,2020,68(10):10130 − 10141.
    [10] WANG Z R, WANG J, WANG Y R. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J] . Neurocomputing,2018,310:213 − 222. doi: 10.1016/j.neucom.2018.05.024
    [11] ZHOU F N, YANG S, FUJITA H, et al. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data[J] . Knowledge-Based Systems,2020,187:104837. doi: 10.1016/j.knosys.2019.07.008
    [12] 肖雄, 肖宇雄, 张勇军, 等. 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J] . 中国电机工程学报,2021,41(2):738 − 749.
    [13] ZHANG L, ZHANG H, CAI G W, et al. The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model[J] . IEEE Transactions on Instrumentation and Measurement,2022,71:1 − 12.
    [14] LIANG P, DENG C, WU J, et al. Single and simultaneous fault diagnosis of gearbox via a semi-supervised and high-accuracy adversarial learning framework[J] . Knowledge-Based Systems,2020,198:105895. doi: 10.1016/j.knosys.2020.105895
    [15] TAO H F, WANG P, CHEN Y, et al. An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks[J] . Journal of the Franklin Institute,2020,357(11):7286 − 7307 doi: 10.1016/j.jfranklin.2020.04.024
    [16] THOMAZELLA R, NASCIMENTO W L, ROBERTO P A, et al. Digital signal processing for self-vibration monitoring in grinding: A new approach based on the time-frequency analysis of vibration signals[J] . Measurement,2019,145:71 − 83. doi: 10.1016/j.measurement.2019.05.079
    [17] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J] . IEEE Transactions on Image Processing,2004,13(4):600 − 612. doi: 10.1109/TIP.2003.819861
    [18] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 586−595.
    [19] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative Adversarial Networks: an overview[J] . IEEE Signal Processing Magazine,2018,35(1):53 − 65. doi: 10.1109/MSP.2017.2765202
    [20] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C] //International Conference on Learning Representations. San Juan: ICLR, 2016.
    [21] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C] //Proceedings of the 34th International Conference on Machine Learning. New York: ACM, 2017: 214−223.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回