留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双极板流道截面形状对质子交换膜燃料电池质量传输和性能的影响研究

郝朝阳 郑金保 缪雪龙 狄亚格

郝朝阳, 郑金保, 缪雪龙, 狄亚格. 双极板流道截面形状对质子交换膜燃料电池质量传输和性能的影响研究[J]. 上海工程技术大学学报, 2024, 38(4): 382-388. doi: 10.12299/jsues.23-0218
引用本文: 郝朝阳, 郑金保, 缪雪龙, 狄亚格. 双极板流道截面形状对质子交换膜燃料电池质量传输和性能的影响研究[J]. 上海工程技术大学学报, 2024, 38(4): 382-388. doi: 10.12299/jsues.23-0218
HAO Zhaoyang, ZHENG Jinbao, MIAO Xuelong, DI Yage. Impact of bipolar plate flow channel cross-section shape on PEMFC mass transfer and performance[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 382-388. doi: 10.12299/jsues.23-0218
Citation: HAO Zhaoyang, ZHENG Jinbao, MIAO Xuelong, DI Yage. Impact of bipolar plate flow channel cross-section shape on PEMFC mass transfer and performance[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 382-388. doi: 10.12299/jsues.23-0218

双极板流道截面形状对质子交换膜燃料电池质量传输和性能的影响研究

doi: 10.12299/jsues.23-0218
详细信息
    作者简介:

    郝朝阳(1998 − ),男,硕士生,研究方向为燃料电池。E-mail:m310121521@sues.edu.cn

    通讯作者:

    郑金保(1979 − ),男,副教授,博士,研究方向为燃料电池技术、氢循环喷射引射技术、无碳燃料喷雾和燃烧可视化。E-mail:jinbao_zheng@163.com

  • 中图分类号: TM911.4

Impact of bipolar plate flow channel cross-section shape on PEMFC mass transfer and performance

  • 摘要: 以矩形截面为基础,采用COMSOL软件研究截面形状对平行单流道燃料电池性能的影响,建立性能仿真模型并验证模型的可行性。在此基础上,研究不同截面形状的流道对平行单流道燃料电池功率密度、质量传输、温度、速度、压降、净输出效率的影响。结果表明,在低电压和高电流密度的情况下,流道的截面形状对燃料电池性能影响明显。三角形截面模型普遍具有较高的最大功率密度,其中W形截面比矩形截面有更高的流速和更小的温度变化,其氢气消耗提高1.8%,氧气消耗提高6.6%,在净输出效率相差不大的情况下,具有更高的功率密度,研究结果为双极板的设计提供了支撑。
  • 图  1  质子交换膜燃料电池平行单流道结构

    Figure  1.  Parallel channel structure of proton exchange membrane fuel cell

    图  2  流道截面形状

    Figure  2.  Cross-sectional shape of flow channel

    图  3  模型极化曲线的验证

    Figure  3.  Validation of model polarization curves

    图  4  不同截面形状下PEMFC的最大功率密度

    Figure  4.  Maximum power density of PEMFC with different cross-sectional shapes

    图  5  PEMFC流道温度

    Figure  5.  Temperature of PEMFC flow channel

    图  6  电压为0.4 V时反应气体的质量传输和水的输运

    Figure  6.  Mass transport of reacting gases and water transport at a voltage of 0.4 V

    图  7  PEMFC阴极通道的输出特性

    Figure  7.  Output characteristics of PEMFC cathode channel

    表  1  模型几何参数

    Table  1.   Model geometric parameters

    名称单位
    电池长度0.05m
    电池宽度2 × 10−3m
    电池高度4.47 × 10−4m
    流道宽度1 × 10−3m
    流道高度1 × 10−3m
    集流体高度2 × 10−3m
    肋宽5 × 10−4m
    气体扩散层厚度2 × 10−4m
    催化层厚度1 × 10−5m
    膜的厚度5 × 10−5m
    横截面积1mm2
    下载: 导出CSV

    表  2  控制方程

    Table  2.   Control equations

    名称 控制方程
    质量守恒方程 $\nabla \cdot \left( {\varepsilon \rho {u}} \right) = {S_{\text{m}}}$
    动量守恒方程 $\nabla \cdot \left( {\varepsilon \rho {uu}} \right){\text{ = }} - \varepsilon \nabla p + \nabla \cdot \left( {\varepsilon {\mu _{eff}}\nabla {u}} \right) + {s_u}$
    能量守恒方程 $\nabla \cdot \left( {\varepsilon \kappa \nabla T} \right) + {S_e} = \nabla \cdot \left( {\varepsilon \rho {u}{c_p}T} \right)$
    brinkman方程 $ \dfrac{\partial }{\partial t}\left({\varepsilon }_{p}\rho \right) + \nabla \cdot \left(\rho \text{u}\right)={Q}_{br} $
    传热方程 ${C_{st}}{M_{st}}\Delta T + {Q_{gas,in}} = {Q_{chem}} - {P_{st}} - {Q_{gas,out}} - {Q_{water}} - {Q_{rad}}$
    浓物质传递方程 $\dfrac{\partial }{{\partial t}}\left( {\rho {c_i}} \right) + \nabla \cdot \left( {\rho {c_i}{u}} \right) = - \nabla \cdot \left( {D_i^{eff}\nabla {c_i}} \right) + {S_i}$
    下载: 导出CSV

    表  3  材料特性和关键物理参数

    Table  3.   Material properties and key physical parameters

    名称 单位
    开路电压 0.9 V
    GDL孔隙率 0.6
    CL孔隙率 0.3
    GDL渗透率 1.18 × 10−11 m2
    CL渗透率 1 × 10−13 m2
    GDL电导率 5000 S/m
    CL电导率 2000 S/m
    阳极传递系数 0.5
    阴极传递系数 1
    入口温度(Tin 353 K
    压力 1 atm
    阳极化学计量比 1
    阴极化学计量比 1
    GDL 导热率 1.7 W/(m·K)
    CL导热率 0.3 W/(m·K)
    膜的导热率 0.25 W/(m·K)
    CC导热率 40 W/(m·K)
    H2_H2O扩散系数 9.15 × 10−5×(Tin/307.1) 1.75 m2/s
    N2_H2O扩散系数 2.56 × 10−5×(Tin/307.15) 1.75 m2/s
    O2_N2扩散系数 2.2 × 10−5×(Tin/293.2) 1.75 m2/s
    O2_H2O扩散系数 2.82 × 10−5×(Tin/308.1) 1.75 m2/s
    阳极参考交换电流密度 100 A/m2
    阴极参考交换电流密度 $ 10^{(0.037\;41\times T_{\mathrm{in}}-16.96)} $ A/m2
    下载: 导出CSV
  • [1] SINGLA MK, NIJHAWAN P, OBEROI AS. Hydrogen fuel and fuel cell technology for cleaner future: a review[J] . Environ Sci Pollut Res Int,2021,28(13):15607 − 15626.
    [2] MANOHARAN Y, HOSSEINI SE, BUTLER B, et al. Hydrogen fuel cell vehicles; current status and future prospect[J] . Applied Sciences-Basel,2019,9(11):2296 − 2313.
    [3] AHLUWALIA RK, WANG X. Fuel cell systems for transportation: status and trends[J] . Journal of Power Sources,2008,177(1):167 − 176.
    [4] BOCK R, KAROLIUSSEN H, POLLET BG, et al. The influence of graphitization on the thermal conductivity of catalyst layers and temperature gradients in proton exchange membrane fuel cells[J] . International Journal of Hydrogen Energy,2020,45(2):1335 − 1342.
    [5] WANG Y, CHEN KS, MISHLER J,et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J] . Applied Energy,2011,88(4):981 − 1007.
    [6] 颜敬昊, 孙宾宾, 高松. 流道截面形状对质子交换膜燃料电池性能的影响[J] . 山东理工大学学报(自然科学版),2021,35(6):11 − 17.
    [7] WANG XD, YAN WM, DUAN YY, et al. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field[J] . Energy Conversion and Management,2010,51(5):959 − 968.
    [8] VARADHA RAJAN L, PAVANAN V, PALANISWAMY K. Interdigitated flow channel on a proton exchange membrane fuel cell investigated using the response surface methodology[J] . Transactions of FAMENA,2019,43(2):61 − 72.
    [9] MOHAMMEDIA, SAHLI Y, BEN MOUSSA H. 3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels[J] . Fuel,2020,263(3):116713 − 116741.
    [10] MANSO AP, MARZO FF, BARRANCO J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J] . International Journal of Hydrogen Energy,2012,37(20):15256 − 15287.
    [11] PAULINO ALR, CUNHA EF, ROBALINHO E, et al. CFD analysis of PEMFC flow channel cross sections[J] . Fuel Cells,2017,17(1):27 − 36.
    [12] LIN L, ZHANG XX, FENG HT, WANG XD. Optimization of a serpentine flow field with variable channel heights and widths for PEM fuel cells[J] . Science China-Technological Sciences,2010,53(2):453 − 460.
    [13] MAHMOUDIMEHR J, DARYADEL A. Influences of feeding conditions and objective function on the optimal design of gas flow channel of a PEM fuel cell[J] . International Journal of Hydrogen Energy,2017,42(36):23141 − 23159.
    [14] NGUYEN PT, BERNING T, DJILALI N. Computational model of a PEM fuel cell with serpentine gas flow channels[J] . Journal of Power Sources,2004,130(1-2):149 − 157.
    [15] ANDERSSON M, BEALE SB, ESPINOZA M, et al. A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells[J] . Applied Energy,2016,180:757 − 778.
    [16] LI WK, ZHANG QL, WANG C, et al. Experimental and numerical analysis of a three-dimensional flow field for PEMFCs[J] . Applied Energy,2017,195:278 − 288.
    [17] KUMAR A, G,REDDY R. Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells[J] . Journal Power Sources,2003,113:11 − 18.
    [18] WANG L. A parametric study of PEM fuel cell performances[J] . International Journal of Hydrogen Energy,2003,28(11):1263 − 1272.
    [19] YANG C, WAN ZM, CHEN X, et al. Geometry optimization of a novel M-like flow field in a proton exchange membrane fuel cell[J] . Energy Conversion and Management,2021,228:113651 − 113661.
    [20] CAI YH, FANG Z, CHEN B, et al. Numerical study on a novel 3D cathode flow field and evaluation criteria for the PEM fuel cell design[J] . Energy,2018,161:28 − 37.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-23
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回