留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合姿态信息和注意力机制的行人重识别研究

梁丹阳 魏丹 庄须瑶 江磊

梁丹阳, 魏丹, 庄须瑶, 江磊. 融合姿态信息和注意力机制的行人重识别研究[J]. 上海工程技术大学学报, 2024, 38(2): 179-186. doi: 10.12299/jsues.23-0181
引用本文: 梁丹阳, 魏丹, 庄须瑶, 江磊. 融合姿态信息和注意力机制的行人重识别研究[J]. 上海工程技术大学学报, 2024, 38(2): 179-186. doi: 10.12299/jsues.23-0181
LIANG Danyang, WEI Dan, ZHUANG Xuyao, JIANG Lei. Research on person re-identification by fusing posture information and attention mechanisms[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 179-186. doi: 10.12299/jsues.23-0181
Citation: LIANG Danyang, WEI Dan, ZHUANG Xuyao, JIANG Lei. Research on person re-identification by fusing posture information and attention mechanisms[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 179-186. doi: 10.12299/jsues.23-0181

融合姿态信息和注意力机制的行人重识别研究

doi: 10.12299/jsues.23-0181
基金项目: 国家自然科学基金资助(62101314)
详细信息
    作者简介:

    梁丹阳(1999−),男,硕士生,研究方向为行人重识别,目标检测。E-mail:liangdanyang1998@163.com

    通讯作者:

    魏 丹(1982−),女,副教授,博士,研究方向为模式识别、智能交通、人脸识别、行人重识别。E-mail:weiweidandan@163.com

  • 中图分类号: TP391.41

Research on person re-identification by fusing posture information and attention mechanisms

  • 摘要: 针对行人重识别(person re-identification, Re-ID)任务中行人遮挡以及背景信息杂乱不便于提取具有辨识度特征的问题,引入人体关键点模型定位出行人的关键点坐标以便于消除背景信息,根据关键点坐标将图片分割成具有语义信息的区域块。对于骨干网络,为使其提取的特征更加鲁棒,设计一个强化注意力模块(enhanced attention module, EAM),使网络自动分配权重,最终得到更加具有辨识度的特征向量。最后将这些区域块和整体图片送入修改后的注意力机制的神经网络并且联合多个损失一起优化网络。在几个行人重识别数据集试验验证了本研究提出方法优于大多数方法。试验结果还表明该网络针对跨域以及遮挡问题也起到积极作用。
  • 图  1  提出的主干网络

    Figure  1.  Proposed backbone network

    图  2  强化注意力模块

    Figure  2.  Enhanced attention module

    图  3  正常数据集中一些困难样本

    Figure  3.  Some difficult samples in normal data set

    图  4  生成的注意力热图

    Figure  4.  Generated attention heatmap

    图  5  本研究提出的注意力机制网络与传统的注意力机制网络对比试验结果

    Figure  5.  Experimental results compare attention mechanism network proposed with traditional attention mechanism network

    图  6  注意力模块不同位置时的结果对比

    Figure  6.  Comparison of results at different positions of the attention module

    表  1  在Market1501以及MSMT17上的试验结果

    Table  1.   Test results on Market1501 dataset

    MethodMarket1501MSMT17
    Rank1mAPRank1mAP
    OSNet[13]94.884.973.588.6
    HOReID[14]94.284.9
    NFormer[15]95.793.080.862.2
    RGA-SC[16]96.188.480.357.5
    AlignedReID + + [17]91.077.680.768.0
    BSnet[18]92.571.7
    CNet[19]95.788.5
    IANet[20]94.483.175.546.8
    Pose-guided[21]93.578.6
    base94.083.475.751.5
    ours95.486.582.368.6
    下载: 导出CSV

    表  2  在遮挡数据集P-DukeMTMC上的试验结果

    Table  2.   Test results on P-DukeMTMC of occluded dataset

    MethodP-DukeMTMC
    Rank1mAP
    DSR[22]40.830.4
    PVPM[23]47.037.7
    HOReID[14]55.143.8
    PCB[24]42.633.7
    ASAN[25]55.443.8
    base55.546.2
    ours59.450.9
    下载: 导出CSV

    表  3  在Market1501数据集上的试验结果

    Table  3.   Test results on Market1501 dataset

    Resnet50KeypointAttentionRank1mAP
    94.083.4
    95.085.3
    94.584.9
    95.486.5
    下载: 导出CSV

    表  4  在P-DukeMTMC遮挡数据集上的结果

    Table  4.   Test results on P-DukeMTMC of occluded dataset

    Resnet50KeypointAttentionRank1mAP
    55.546.2
    58.649.3
    57.147.6
    59.450.9
    下载: 导出CSV

    表  5  针对跨域数据集上进行试验

    Table  5.   Experimental results on cross-domain datasets

    ModeMa→MNMN→Ma
    Rank1mAPRank1mAP
    Base 33.2 18.5 41.3 20.5
    + attention 36.4 20.3 45.6 23.1
    + openpose 38.5 22.7 47.1 25.5
    our 39.4 23.6 48.5 27.4
    下载: 导出CSV
  • [1] 罗浩, 姜伟, 范星, 等. 基于深度学习的行人重识别研究进展[J] . 自动化学报,2019,45(11):2032 − 49.
    [2] 马丁. 面向复杂场景的行人重识别关键技术研究 [D]. 徐州: 中国矿业大学, 2022.
    [3] 沈欣怡. 基于深度学习行人重识别研究 [D]. 长春: 吉林大学, 2022.
    [4] ZHENG L, HUANG Y J, LU H, et al. Pose invariant embedding for deep person re-identification[J] . IEEE Trans Image Process,2019,28(9):4500 − 4509.
    [5] ZHAO H Y, TIAN M Q, SUN S Y, et al. Spindle net: Person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017.
    [6] SU C, LI J, ZHANG S, et al. Pose-driven deep convolutional model for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Sydney: IEEE, 2013.
    [7] SUH Y, WANG J, TANG S, et al. Part-aligned bilinear representations for person re-identification[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich: Springer, 2018.
    [8] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011 − 23. doi: 10.1109/TPAMI.2019.2913372
    [9] WOO S, PARK J, LEE J-Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich: Springer, 2018.
    [10] PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module[EB/OL]. (2018-07-17)[2023-04-03]. https://doi.org/10.48550/arXiv.1807.06514.
    [11] LI Y, YANG S, LIU P, et al. SimCC: A simple coordinate classification perspective for human pose estimation[C]//Proceedings of the 17th European Conference on Computer Vision (ECCV). Tel Aviv: Springer, 2022.
    [12] CHEN K, WANG J, PANG J, et al. MMDetection: Open MMLab detection toolbox and benchmark[EB/OL]. (2019-06-17)[2022-12-21]. https://arxiv.org/abs/1906.07155.
    [13] ZHOU K, YANG Y, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019.
    [14] WANG G, YANG S, LIU H, et al. High-order information matters: Learning relation and topology for occluded person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020.
    [15] WANG H, SHEN J, LIU Y, et al. NFormer: Robust person re-identification with neighbor transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022.
    [16] ZHANG Z, LAN C, ZENG W, et al. Relation-aware global attention for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2020.
    [17] LUO H, JIANG W, ZHANG X, et al. AlignedReID plus plus: Dynamically matching local information for person re-identification[J] . Pattern Recognition: The Journal of the Pattern Recognition Society,2019,94:53 − 61. doi: 10.1016/j.patcog.2019.05.028
    [18] CHEN G, ZOU G, LIU Y, et al. Few-shot person re-identification based on feature set augmentation and metric fusion[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106761.
    [19] ZHANG G, LIN W, CHANDRAN A K, et al. Complementary networks for person re-identification[J] . Information Sciences,2023,633:70 − 84. doi: 10.1016/j.ins.2023.02.016
    [20] HOU R, MA B, CHANG H, et al. Interaction-and-aggregation network for person re-identification[C]//Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019.
    [21] KHATUN A, DENMAN S, SRIDHARAN S, et al. Pose-driven attention-guided image generation for person re-identification[EB/OL]. (2021-04-28)[2023-04-21]. https://doi.org/10.48550/arXiv.2104.13773.
    [22] HE L, LIANG J, LI H, et al. Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake: IEEE, 2018.
    [23] GAO S, WANG J, LU H, et al. Pose-guided visible part matching for occluded person ReID[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington: IEEE, 2020.
    [24] SUN Y, ZHENG L, YANG Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Salt Lake: IEEE, 2018.
    [25] JIN H, LAI S, QIAN X J I T O C, et al. Occlusion-sensitive person re-identification via attribute-based shift attention[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(4): 2170−2185.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  139
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-12
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回