留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于萘酰亚胺和三苯胺的能量转移型大Stokes位移聚集诱导发光分子

金怡彤 黄文灵 蒋娜 周慧敏 瞿祎

金怡彤, 黄文灵, 蒋娜, 周慧敏, 瞿祎. 基于萘酰亚胺和三苯胺的能量转移型大Stokes位移聚集诱导发光分子[J]. 上海工程技术大学学报, 2023, 37(3): 290-295. doi: 10.12299/jsues.22-0341
引用本文: 金怡彤, 黄文灵, 蒋娜, 周慧敏, 瞿祎. 基于萘酰亚胺和三苯胺的能量转移型大Stokes位移聚集诱导发光分子[J]. 上海工程技术大学学报, 2023, 37(3): 290-295. doi: 10.12299/jsues.22-0341
JIN Yitong, HUANG Wenling, JIANG Na, ZHOU Huimin, QU Yi. Aggregation-Induced emissive molecule with large stokes shift based on naphthalimide and triphenylamine[J]. Journal of Shanghai University of Engineering Science, 2023, 37(3): 290-295. doi: 10.12299/jsues.22-0341
Citation: JIN Yitong, HUANG Wenling, JIANG Na, ZHOU Huimin, QU Yi. Aggregation-Induced emissive molecule with large stokes shift based on naphthalimide and triphenylamine[J]. Journal of Shanghai University of Engineering Science, 2023, 37(3): 290-295. doi: 10.12299/jsues.22-0341

基于萘酰亚胺和三苯胺的能量转移型大Stokes位移聚集诱导发光分子

doi: 10.12299/jsues.22-0341
基金项目: 上海辰山植物园上海市资源植物功能基因组学重点实验室开发课题资助(PFGR202304)
详细信息
    作者简介:

    金怡彤(2000−),女,在读硕士,研究方向为有机光电功能材料. E-mail:710254701@qq.com

    通讯作者:

    瞿 祎(1984−),男,副教授,博士,研究方向为有机光电功能材料. Email:yiqu@sues.edu.cn

  • 中图分类号: O652.7

Aggregation-Induced emissive molecule with large stokes shift based on naphthalimide and triphenylamine

  • 摘要: 聚集诱导发光(AIE)现象是近年来光电功能材料的研究热点之一. 已开发的聚集诱导发光材料其发射光谱大都位于短波长的蓝绿光区域. 利用发色团光谱重叠构建高效的能量转移过程,实现了大Stokes位移的聚集诱导发光分子的构建. 使用实验室开发的4-苯基萘酰亚胺(NIP)蓝光聚集诱导发光分子作为能量给体,使用红光的氰基乙烯基三苯胺(TPACN)为能量受体,构建出的分子(NIPTPACN)可以在360 nm紫外光激发下,实现608 nm的红光聚集诱导发光. NIPTPACN的Stokes 位移达到248 nm,聚集态荧光发光强度是单纯使用氰基乙烯基三苯胺的82.6倍. 该研究成功实现了基于能量转移的大Stokes位移聚集诱导发光分子构建,为长波发光和大Stokes位移聚集诱导发光分子的设计提供了新的策略.
  • 图  1  目标化合物NIPTPACN的设计策略

    Figure  1.  Designing strategy of target compound NIPTPACN

    图  2  化合物NIPTPACN的合成路线

    Figure  2.  Synthesis routine of compound NIPTPACN

    图  3  不同溶剂中化合物的紫外吸收光谱图

    Figure  3.  Ultraviolet absorption spectra compounds in different solvents

    图  4  不同溶剂中化合物的荧光光谱图

    Figure  4.  Fluorescence spectra of compounds in different solvents

    图  5  纯水溶液中NIPTPACN的吸收光谱和NIPTPA, NIP, TPACN的荧光光谱

    Figure  5.  Absorption spectra of NIPTPACN and fluorescence spectra of NIPTPACN, NIP and TPACN in pure water solution

    图  6  化合物NIP、TPACN和NIPTPACN在四氢呋喃-水混合体系中的聚集诱导发光性质

    Figure  6.  Aggregation-induced emission properties of the compounds NIP, TPACN and NIPTPACN in the THF-water mixture

  • [1] QUAN L N, RAND B P, FRIEND R H, et al. Perovskites for next-generation optical sources[J] . Chemical Reviews,2019,119(12):7444 − 7477. doi: 10.1021/acs.chemrev.9b00107
    [2] WANG C, DONG H, JIANG L, et al. Organic semiconductor crystals[J] . Chemical Society Review,2018,47(2):422 − 500. doi: 10.1039/C7CS00490G
    [3] HEDLEY G J, RUSECKAS A, SAMUEL I D W. Light harvesting for organic photovoltaics[J] . Chemical Reviews,2017,117(2):796 − 837. doi: 10.1021/acs.chemrev.6b00215
    [4] XIE Q Y, QU Y, WANG G L, et al. New bipolar host materials based on isoquinoline and phenylcarbazole for red PhOLEDs[J] . Dyes and Pigments,2022,205:110559. doi: 10.1016/j.dyepig.2022.110559
    [5] LUO J, XIE Z, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J] . Chemical Communications,2001(18):1740 − 1741.
    [6] XU W H, WANG D, TANG B Z. NIR-II AIEgens: A win-win integration towards bioapplications[J] . Angewandte Chemie International Edition,2021,60(14):7476 − 7487. doi: 10.1002/anie.202005899
    [7] CUI L, BAEK Y, LEE S, et. al. An AIE and ESIPT based kinetically resolved fluorescent probe for biothiols[J] . Journal of Materials Chemistry C,2016,4(14):2909 − 2914. doi: 10.1039/C5TC03272E
    [8] ZHANG J, XU B, CHEN J, et. al. Oligo(phenothiazine)s: Twisted intramolecular charge transfer and aggregation-induced emission[J] . The Journal of Physical Chemistry C,2013,117(44):23117 − 25. doi: 10.1021/jp405664m
    [9] CHEN H, QU Y, LUO X, et. al. Dual model fluorescent probe for BSA and tetracycline derivatives based on dipyridinyltriphenylamine and indole-fused-naphthalimide[J] . Dyes and Pigments,2022,206:110619. doi: 10.1016/j.dyepig.2022.110619
    [10] LUO X, QU Y, ZHANG Y, et. al. The flexibility of side chains for adjusting the emission of 4-aryl-1, 8-naphthalimides in aggregation: Spectral study and cell imaging[J] . Chemical Engineering Journal,2021,415:129095. doi: 10.1016/j.cej.2021.129095
    [11] ZHANG Y, QU Y, ZHU Y, et al. Bisnaphthalimide-based fluorescent sensor for detecting alcohol and application in evaluating the liquors[J] . Journal of Luminescence,2019,214:116573. doi: 10.1016/j.jlumin.2019.116573
  • 加载中
图(6)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  118
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回