留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光里程计改进点云配准算法的车辆定位研究

朱蒙 马其华

朱蒙, 马其华. 激光里程计改进点云配准算法的车辆定位研究[J]. 上海工程技术大学学报, 2024, 38(1): 7-14. doi: 10.12299/jsues.22-0282
引用本文: 朱蒙, 马其华. 激光里程计改进点云配准算法的车辆定位研究[J]. 上海工程技术大学学报, 2024, 38(1): 7-14. doi: 10.12299/jsues.22-0282
ZHU Meng, MA Qihua. Research on vehicle location of improved point cloud matching algorithm with laser odometer[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 7-14. doi: 10.12299/jsues.22-0282
Citation: ZHU Meng, MA Qihua. Research on vehicle location of improved point cloud matching algorithm with laser odometer[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 7-14. doi: 10.12299/jsues.22-0282

激光里程计改进点云配准算法的车辆定位研究

doi: 10.12299/jsues.22-0282
详细信息
    作者简介:

    朱蒙:朱 蒙(1996−),女,硕士生,研究方向为智能车多传感器融合定位、激光点云等。E-mail:1397512596@qq.com

    通讯作者:

    马其华(1980−),男,副教授,博士,研究方向为智能车多传感器融合定位、激光点云等。E-mail:mqh0386@sues.edu.cn

  • 中图分类号: TP391

Research on vehicle location of improved point cloud matching algorithm with laser odometer

  • 摘要: 针对传统迭代最近点(ICP)算法在点云配准过程中依赖于初始位置、匹配时间长、匹配精度差等问题,提出一种激光里程计改进点云配准算法的车辆定位方法。首先,在点云预处理方面对点云进行有序化和畸变点云补偿处理;然后,对点云动态特征点去除后进行静态特征点的稳定提取;最后,在点云配准过程中先对点云进行粗配准以减少点云对初始位置的依赖,接着提出双向k维树改进ICP算法进行点云精配准。通过KITTI数据集和自动驾驶小车平台进行试验测试分析,结果表明,改进点云配准算法相比于传统ICP算法有更快的匹配速度和精准度,里程计累积轨迹误差小。
  • 图  1  优化点云匹配算法流程

    Figure  1.  Optimizing process of point cloud matching algorithm

    图  2  帧间畸变点云校正

    Figure  2.  Distortion point cloud correction between frames

    图  3  目标分割

    Figure  3.  Target segmentation

    图  4  算法在多路径长度下轨迹的绝对误差

    Figure  4.  Absolute error of algorithm trajectory under multipath length

    图  5  算法在多路径长度下轨迹的相对误差

    Figure  5.  Relative error of algorithm trajectory under multipath length

    图  6  多场景下不同算法运行时间对比

    Figure  6.  Comparison of runtimes of different algorithm in multiple scenarios

    图  7  多场景下不同算法精度对比

    Figure  7.  Comparison of accuracy of different algorithms in multiple scenarios

    图  8  激光里程计行驶轨迹图

    Figure  8.  Laser odometer trajectory diagram

    图  9  无人驾驶小车测试平台

    Figure  9.  Driverless car test platform

    图  10  传统ICP点云匹配算法建图

    Figure  10.  Traditional ICP point cloud matching algorithm mapping

    图  11  改进ICP点云配准算法建图

    Figure  11.  Improved ICP point cloud registration algorithm mapping

    表  1  消融试验

    Table  1.   Ablation experiment

    模块点云预处理去除动态特征点静态特征点提取粗配准精配准配准时间点云重合率/%RMSE(R)RMSE(t)
    (1)0.0234654.9720.523
    (2)0.0192744,6460.436
    (3)0.0175824.4780.401
    (4)0.0133893.9240.382
    (5)0.0107963.5100.365
    下载: 导出CSV

    表  2  两种算法试验数据对比

    Table  2.   Comparison of experimental data of two algorithms

    算法点云重合数均方根误差匹配精度
    传统ICP算法108791.12e−60.75
    改进点云算法169670.78e−60.92
    下载: 导出CSV
  • [1] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE Computer Society, 2017: 2961−2966.
    [2] POUDEL R P, BONDE U, LIWICKI S, et al. Infrastructure-free hierarchical mobile robot global localization in repetitive environments[J] . IEEE Transactions on Instrumentation and Measurement,2021,4(9):1568 − 1575.
    [3] 胡玉文, 龚建伟, 姜岩, 等. 基于子地图的智能车辆同步定位与地图创建[J] . 汽车工程,2015,37(2):224 − 229. doi: 10.19562/j.chinasae.qcgc.2015.02.018
    [4] DAVAK G. Robust moving object detection based on fusing tanassove Intuitionistic 3D Fuzzy Histon Roughness Index and texture features[J] . International Journal of Approximate Reasoning,2021,4(56):135 − 143.
    [5] BESL P J, MCKAY N D. A method for registration of 3-D shapes[J] . IEEE Transactions on Pattern Analysis and Machin Intelligence,2022,14(2):239 − 256.
    [6] SUJYH. L, SHJK K. Tree point clouds registration using an improved ICP algorithm based on kd-tree[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE, 2016: 4545−4548.
    [7] CIM S, TAO L. Improved iterative closest point(ICP)3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration[J] . International Journal of Remote Sensing,2019,37(11):3197 − 3220.
    [8] 郑立华, 麦春艳, 廖崴, 等. 基于Kinect相机的苹果树三维点云配准[J] . 农业机械学报,2016,47(5):9 − 14.
    [9] JIANG C, JOB J H, XHEK K C, et al. Registration for 3D point cloud using angular-invariant feature Neuro computing[J] . IEEE Access,2020,8(56):3839 − 3844.
    [10] CHEN H, BOJK B, HAN K, el at. 3D free-form object recognition in range images using local surface patches[J] . Pattern Recognit,2022,9(124):1252 − 1262.
    [11] MA G Q, LIU L L, YUK Z, et al. Aplication and development of three-dimensional profile measurement for largeand complex surface[J] . Chinese Optics,2019,12(2):214 − 228. doi: 10.3788/co.20191202.0214
    [12] LIU J X, ZHANG G, LI P, et al. ICP three-dimensional point cloud registration based on KD tree optimization[J] . Engineering of Surveying and Mapping,2020,25(6):15 − 18.
    [13] GREE M. Approximate K-D free search for efficient ICP[J] . Digital Imaging and Modeling,2013,8(114):442 − 448.
    [14] 李仁忠. 基于ISS特征点结合改进ICP的点云配准算法[J] . 激光与光电子学,2017,54(11):312 − 319.
    [15] 张涛, 张晨, 魏宏宇, 等. 动态环境下融合激光雷达和IMU的激光里程计设计[J] . 导航定位与授时,2022,4(25):1602 − 1610.
    [16] 李永锋, 张国良, 徐君, 等. 基于Kinect的帧间配准改进ICP算法[J] . 电光与控制,2016,23(2):56 − 60. doi: 10.3969/j.issn.1671-637X.2016.02.012
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  99
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回