留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆台形二甲醚水蒸气重整制氢反应器设计与优化

魏世平 李聪

魏世平, 李聪. 圆台形二甲醚水蒸气重整制氢反应器设计与优化[J]. 上海工程技术大学学报, 2023, 37(4): 335-342. doi: 10.12299/jsues.22-0242
引用本文: 魏世平, 李聪. 圆台形二甲醚水蒸气重整制氢反应器设计与优化[J]. 上海工程技术大学学报, 2023, 37(4): 335-342. doi: 10.12299/jsues.22-0242
WEI Shiping, LI Cong. Design and optimization of dimethyl ether reforming reactor for hydrogen production[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 335-342. doi: 10.12299/jsues.22-0242
Citation: WEI Shiping, LI Cong. Design and optimization of dimethyl ether reforming reactor for hydrogen production[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 335-342. doi: 10.12299/jsues.22-0242

圆台形二甲醚水蒸气重整制氢反应器设计与优化

doi: 10.12299/jsues.22-0242
详细信息
    作者简介:

    魏世平(1999−),男,在读硕士,研究方向为二甲醚水蒸气重整制氢. E-mail:1031005128@qq.com

    通讯作者:

    李 聪(1977−),女,副教授,博士,研究方向为汽车新能源技术. E-mail:licong@sues.edu.cn

  • 中图分类号: TK91

Design and optimization of dimethyl ether reforming reactor for hydrogen production

  • 摘要: 设计了一种圆台形二甲醚水蒸气重整制氢反应器,并建立了二甲醚水蒸气重整制氢反应系统数值模型,利用COMSOL软件对建立的数值模型进行求解,仿真和实验的数值结果基本一致. 通过对重整反应器的结构进行优化,获得更高的二甲醚转化率,研究圆台锥度变化对重整反应的影响,分析反应条件对二甲醚转化和制氢的影响. 结果表明,在一定范围内增加锥度时,可以获得较高的产氢率和热效率. 通过结构优化,二甲醚水蒸气重整反应系统可获得92.21%的二甲醚转化率,90.54%的产氢率,热效率最高可达74.6%.
  • 图  1  DME重整反应器设计图

    Figure  1.  Design diagram of DME reforming reactor

    图  2  圆台锥度示意图

    Figure  2.  Schematic diagram of cone taper

    图  3  反应器内部结构及网格划分

    Figure  3.  Internal structure and grid division of reactor

    图  4  反应器温度变化图

    Figure  4.  Temperature variation diagram of reactor

    图  5  不同假设下DME转化率比较

    Figure  5.  Comparison of DME conversion under different assumptions

    图  6  反应床压力分布图

    Figure  6.  Pressure distribution of reaction bed

    图  7  重整反应实验流程图

    Figure  7.  Flow chart of reforming reaction experiment

    图  8  实验值和模拟值比较

    Figure  8.  Comparison of experimental and simulated values

    图  9  圆台形反应器

    Figure  9.  Round table reactor

    图  10  温度对反应的影响

    Figure  10.  Effect of temperature on reaction

    图  11  水醚比对反应的影响

    Figure  11.  Effect of steam-to-ether ratio on reaction

    表  1  DME 重整反应的动力学模型及反应速率

    Table  1.   Kinetic model and reaction rate of DME reforming reaction

    反应名称化学方程式反应速率
    二甲醚水解$\mathrm{CH}_3 \mathrm{OCH}_3+\mathrm{H}_2 \mathrm{O}=2 \mathrm{CH}_3 \mathrm{OH}$$\left( {1 - \varepsilon } \right)\rho {\text{•} } \exp\left( { - {E_{\rm{H}}}/RT} \right){C_{{\rm{DME}}} }$[16]
    甲醇水蒸气重整反应$\mathrm{CH}_3 \mathrm{OH}+\mathrm{H}_2 \mathrm{O} \Leftrightarrow \mathrm{CO}_2+3 \mathrm{H}_2$$\begin{gathered} \left( {1 - \varepsilon } \right)\rho {\text{•} } {k_R}. {\rm{exp} }\left( { - {E_{\rm{H}}}/RT} \right){C_{{\rm{CH}}_3{\rm{OH}}} } \\ {k_R} = 5.5•(1.15\text{•}1{0^6} + 9.41\text{•}1{0^5}\text{•}\log\Phi ) {\rm{exp} }\left( { - {E_R}/RT} \right) \\ \end{gathered}$[16]
    水煤气变换反应$\mathrm{CO}+\mathrm{H}_2 \mathrm{O} \Leftrightarrow \mathrm{CO}_2+\mathrm{H}_2$$\begin{array}{*{20}{l} } {11.2 {k_{{\rm{WGS}}} }\left( { {P_{{\rm{CO}}} }{P_{{\rm{H}}_2{\rm{O}}} } - {P_{{\rm{co}}_2} }{P_{{\rm{H}}_2} }/{k_{{\rm{eq}}} } } \right)} \\ { {K_{{\rm{WGS}}} } = 1.74\text{•}1{0^{17} }(1 - 0.154\;0\delta + 0.008{\delta ^2}){T^{ - 8.5} }{\rm{exp} }\left( { - 3\;500/(RT)} \right)} \\ {k_{{\rm{eq}}} } = {\rm{exp} }\left( {4\;577.8/T - 4.33} \right) \end{array}$[16]
    下载: 导出CSV
  • [1] ADENIYI A G, IGHALO J O, ELETTA O A A. Process integration and feedstock optimisation of a two-step biodiesel production process from jatropha curcas using aspen plus[J] . Chemical Product and Process Modeling,2018,14(2):2018 − 0055.
    [2] FAN F Y, ZHAO L, HOU H, ZHANG Q. Insights into the CO formation mechanism during steam reforming of dimethyl ether over NiO/Cu-based catalyst[J] . Industrial & Engineering Chemistry Research,2019,58(8):3440 − 3449.
    [3] 刘江华. 氢能源: 未来的绿色能源[J] . 现代化工,2006(S2):10 − 13,15. doi: 10.16606/j.cnki.issn0253-4320.2006.s2.003
    [4] KAJORNSAK F, NAWIN V, WIWUT T. Evaluation of the thermodynamic equilibrium of the autothermal reforming of dimethyl ether[J] . International Journal of Hydrogen Energy,2011,36(10):5865 − 5874. doi: 10.1016/j.ijhydene.2011.02.027
    [5] SONG J W, CHOI M Y, LEE J, et al. Improvement of fuel economy and greenhouse gases reduction in gasoline powered vehicles through the TWC-NOx trap catalyst[J] . International Journal of Automotive Technology,2020,21(2):441 − 449. doi: 10.1007/s12239-020-0041-8
    [6] SWMWISBERGER T A, BORUP R L. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis[J] . Journal of Power Soures,2005,152(10):87 − 96.
    [7] FENG D M, WANG Y Y, WANG D, et al. Steam reforming of dimethyl ether over Cu-ZnO-Al2O3-ZrO2 + ZSM-5: A kinetic study[J] . Chemical Engineering Journal,2009,146(2):477 − 485.
    [8] WANG S, ISHIHARA T, TAKITA Y. Partial oxidation of dimethyl ether over various supported metal catalysts[J] . Applied Catalysis A: General,2002,228(1/2):167 − 176. doi: 10.1016/S0926-860X(01)00985-1
    [9] LI C, GAO Y, WU C. Modeling and simulation of hydrogen production from dimethyl ether steam reforming using exhaust gas[J] . International Journal of Energy Research,2015,39(9):1272 − 1279. doi: 10.1002/er.3330
    [10] 寇素原, 王晓蕾, 任克威, 等. 二甲醚水蒸气重整制氢过程的热力学分析[J] . 天然气化工(C1化学与化工),2009,34(1):35 − 40.
    [11] CHEN Y, ZHANG C, WU R, et al. Methanol steam reforming in microreactor with constructal tree-shaped network[J] . Journal of Power Sources,2011,196(15):6366 − 6373. doi: 10.1016/j.jpowsour.2011.03.044
    [12] YAO F, CHEN Y, PETERSON G P. Hydrogen production by methanol steam reforming in a disc microreactor with tree-shaped flow architectures[J] . International Journal of Heat and Mass Transfer,2013,64:418 − 425. doi: 10.1016/j.ijheatmasstransfer.2013.04.057
    [13] AN H, LI A, SASMITO A P, et al. Computational fluid dynamics (CFD) analysis of micro-reactor performance: Effect of various configurations[J] . Chemical Engineering Science,2012,75:85 − 95. doi: 10.1016/j.ces.2012.03.004
    [14] CHEN S Y, Li C, REN H J. Design and optimization of reforming hydrogen production reaction system for automobile fuel cell[J] . International Journal of Hydrogen Energy,2021,46(49):25252 − 25263. doi: 10.1016/j.ijhydene.2021.05.035
    [15] XU D, LI C. Design and optimization of dimethyl ether steam-reforming reactor[J] . Journal of Energy Engineering,2022,148(2):1943.
    [16] ZHANG T Q, OU K, JUNG S H, et al. Dynamic analysis of a PEM fuel cell hybrid system with an on-board dimethyl ether (DME) steam reformer (SR)[J] . International Journal of Hydrogen Energy,2018,43(29):13521 − 13531. doi: 10.1016/j.ijhydene.2018.05.098
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  150
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回