Research progress of carbon deposition resistance of catalyst for dry reforming of methane to hydrogen
-
摘要: 现代工业制氢技术中,甲烷重整制氢具有反应物丰富、可利用性高等独特优势,尤其甲烷干重整(Dry Reforming of Methane, DRM)技术,以甲烷和二氧化碳为原料,兼具环境和经济效益,而催化剂积碳是影响DRM技术发展的主要问题之一. 从催化剂活性组分、载体和助剂方面,详细阐述催化剂组分相互作用、活性金属粒径、碱度、储氧能力和积碳类型对DRM催化剂抗积碳性能的影响. 分析发现活性金属和载体的强相互作用、双金属的协同作用以及较小的活性金属颗粒均有助于减少积碳和提高催化剂活性,提高催化剂的储氧能力能促进碳脱除,积碳类型及数量与载体密切相关,载体碱度适中有助于增强CO2的活化,提高催化剂抗积碳能力. 研究结果为甲烷干重整制氢催化剂的设计和优化提供参考.Abstract: Among modern industrial hydrogen production technologies, methane reforming for hydrogen production has unique advantages in rich reactant sources and high availability, especially dry reforming of methane (DRM) technology, which uses methane and carbon dioxide as raw materials and has both environmental and economic benefits. Carbon deposition on catalyst is one of the main problems affecting the development of DRM technology. To design high-performance catalysts, current research mainly focuses on the active components, supports, and promoters. This article discusses in detail the effects of interaction between active components and supports, active metal particle size, basicity, oxygen storage capacity, and carbon deposition type on the carbon deposition resistance of DRM catalysts. The results indicate that strong interactions between active metals and supports, synergistic effects of bimetallic catalysts, and smaller active metal particles can reduce carbon deposition and improve catalyst activity. Increasing oxygen storage capacity can promote carbon removal. The type and amount of carbon deposition are closely related to the support material, and moderate support basicity can promote CO2 activation, thereby improving the carbon deposition resistance of the catalyst. This article provides a reference for the design and optimization of DRM catalysts.
-
[1] 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J] . 化学进展,2021,33(12):2215 − 2244. [2] 刘勇, 李江华, 李思梦, 等. CH4/CO2等离子体重整反应的研究进展[J] . 天然气化工,2017,42(5):120 − 125. [3] TURAP Y S, WANG I W, FU T T, et al. Co–Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane[J] . International Journal of Hydrogen Energy,2020,45(11):6538 − 6548. doi: 10.1016/j.ijhydene.2019.12.223 [4] LE SACHÉ E, PASTOR-PÉREZ L, WATSON D, et al. Ni stabilised on inorganic complex structures: Superior catalysts for chemical CO2 recycling via dry reforming of methane[J] . Applied Catalysis B: Environmental,2018,236:458 − 465. doi: 10.1016/j.apcatb.2018.05.051 [5] KUMAR R, KUMAR K, PANT K K, et al. Tuning the metal-support interaction of methane tri-reforming catalysts for industrial flue gas utilization[J] . International Journal of Hydrogen Energy,2020,45(3):1911 − 1929. doi: 10.1016/j.ijhydene.2019.11.111 [6] RUCKENSTEIN E, WANG H Y. Carbon dioxide reforming of methane to synthesis gas over supported cobalt catalysts[J] . Applied Catalysis A: General,2000,204(2):257 − 263. doi: 10.1016/S0926-860X(00)00674-8 [7] BU K K, KUBOON S C, DENG J, et al. Methane dry reforming over boron nitride interface-confined and LDHs-derived Ni catalysts[J] . Applied Catalysis B: Environmental,2019,252:86 − 97. doi: 10.1016/j.apcatb.2019.04.007 [8] JANG W J, JEONG D W, SHIM J O, et al. Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases[J] . Renewable Energy,2015,79:91 − 95. doi: 10.1016/j.renene.2014.08.032 [9] ARAMOUNI N A K, TOUMA J G, TARBOUSH B A, et al. Catalyst design for dry reforming of methane: Analysis review[J] . Renewable and Sustainable Energy Reviews,2018,82:2570 − 2585. doi: 10.1016/j.rser.2017.09.076 [10] ZHANG L J, WANG F G, ZHU J Y, et al. CO2 reforming with methane reaction over Ni@SiO2 catalysts coupled by size effect and metal-support interaction[J] . Fuel,2019,256:115954. doi: 10.1016/j.fuel.2019.115954 [11] DAS S, P´EREZ-RAMÍREZ J, GONG J L, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J] . Chemical Society Reviews,2020,49(10):2937 − 3004. doi: 10.1039/C9CS00713J [12] KIM W Y, JANG J S, RA E C, et al. Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane[J] . Applied Catalysis A: General,2019,575:198 − 203. doi: 10.1016/j.apcata.2019.02.029 [13] ARAMOUNI N A K, ZEAITER J, KWAPINSKI W, et al. Eclectic trimetallic Ni–Co–Ru catalyst for the dry reforming of methane[J] . International Journal of Hydrogen Energy,2020,45(35):17153 − 17163. doi: 10.1016/j.ijhydene.2020.04.261 [14] WU H J, PANTALEO G, PAROLA V L, et al. Bi-and trimetallic Ni catalysts over Al2O3 and Al2O3−MOx (M= Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects[J] . Applied Catalysis B: Environmental,2014,156:350 − 361. [15] KAWI S, KATHIRASER Y, NI J, et al. Progress in synthesis of highly active and stable nickel‐based catalysts for carbon dioxide reforming of methane[J] . ChemSusChem,2015,8(21):3556 − 3575. doi: 10.1002/cssc.201500390 [16] SONG K, LU M, XU S, et al. Effect of alloy composition on catalytic performance and coke-resistance property of Ni−Cu/Mg(Al)O catalysts for dry reforming of methane[J] . Applied Catalysis B: Environmental,2018,239:324 − 333. doi: 10.1016/j.apcatb.2018.08.023 [17] HORLYCK J, LAWREY C, LOVELL E C, et al. Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane[J] . Chemical Engineering Journal,2018,352:572 − 580. doi: 10.1016/j.cej.2018.07.009 [18] ZHANG J G, WANG H, DALAI A K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane[J] . Journal of Catalysis,2007,249(2):300 − 310. doi: 10.1016/j.jcat.2007.05.004 [19] THEOFANIDIS S A, GALVITA V V, POELMAN H, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe[J] . Acs Catalysis,2015,5(5):3028 − 3039. doi: 10.1021/acscatal.5b00357 [20] GUHAROY U, SACHÉ E L, CAI Q, et al. Understanding the role of Ni-Sn interaction to design highly effective CO2 conversion catalysts for dry reforming of methane[J] . Journal of CO2 Utilization,2018,27:1 − 10. doi: 10.1016/j.jcou.2018.06.024 [21] NÉMETH M, SÁFRÁN G, HORVÁTH A, et al. Hindered methane decomposition on a coke-resistant Ni-In/SiO2 dry reforming catalyst[J] . Catalysis Communications,2019,118:56 − 59. doi: 10.1016/j.catcom.2018.10.003 [22] XIE Z H, YAN B H, KATTEL S, et al. Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity[J] . Applied Catalysis B: Environmental,2018,236:280 − 293. doi: 10.1016/j.apcatb.2018.05.035 [23] HAN J W, PARK J S, CHOI M S, et al. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane[J] . Appl ied Catal ysis B: Environ mental,2017,203:625 − 632. doi: 10.1016/j.apcatb.2016.10.069 [24] WANG J, ZHANG J, ZHONG H X, et al. Effect of support morphology and size of nickel metal ions on hydrogen production from methane steam reforming[J] . Chemical Physics Letters,2020,746:137291. doi: 10.1016/j.cplett.2020.137291 [25] KANG D W, YU J, MA W H, et al. Synthesis of Cu/Ni-La0.7Sr0.3Cr0.5Mn0.5O3-δ and its catalytic performance on dry methane reforming[J] . Journal of Rare Earths,2019,37:585 − 593. doi: 10.1016/j.jre.2018.10.016 [26] TIAN J Q, LI H C, ZENG X, et al. Facile immobilization of Ni nanoparticles into mesoporous MCM-41 channels for efficient methane dry reforming[J] . Chinese Journal of Catalysis,2019,40:1395 − 1404. doi: 10.1016/S1872-2067(19)63403-0 [27] BALLARINI A, BASILE F, BENITO P, et al. Platinum supported on alkaline and alkaline earth metal-doped alumina as catalysts for dry reforming and partial oxidation of methane[J] . Applied Catalysis A: General,2012,433:1 − 11. [28] SENGUPTA S, DEO G. Modifying alumina with CaO or MgO in supported Ni and Ni-Co catalysts and its effect on dry reforming of CH4[J] . Journal of CO2 Utilization,2015,10:67 − 77. doi: 10.1016/j.jcou.2015.04.003 [29] DAMA S, GHODKE S R, BOBADE R, et al. Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane[J] . Applied Catalysis B: Environmental,2018,224:146 − 158. doi: 10.1016/j.apcatb.2017.10.048 [30] ZHU J Q, PENG X X, YAO L, et al. Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience[J] . International Journal of Hydrogen Energy,2013,38(1):117 − 126. doi: 10.1016/j.ijhydene.2012.07.136 [31] WANG F G, XU L L, YANG J, et al. Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction[J] . Catalysis Today,2017,281:295 − 303. doi: 10.1016/j.cattod.2016.03.055 [32] CHEIN R Y, FUNG W Y. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts[J] . International Journal of Hydrogen Energy,2019,44(28):14303 − 14315. doi: 10.1016/j.ijhydene.2019.01.113 [33] BIAN Z F, WANG Z G, JIANG B, et al. A review on perovskite catalysts for reforming of methane to hydrogen production[J] . Renewable and Sustainable Energy Reviews,2020,134:110291. doi: 10.1016/j.rser.2020.110291 [34] PICHAS C, POMONIS P, PETRAKIS D, et al. Kinetic study of the catalytic dry reforming of CH4 with CO2 over La2-xSrxNiO4 perovskite-type oxides[J] . Applied Catalysis A: General,2010,386(1-2):116 − 123. doi: 10.1016/j.apcata.2010.07.043 [35] SUTTHIUMPORN K, KAWI S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression[J] . International Journal of Hydrogen Energy,2011,36(22):14435 − 14446. doi: 10.1016/j.ijhydene.2011.08.022 [36] XU J K, ZHOU W, WANG J H, et al. Characterization and analysis of carbon deposited during the dry reforming of methane over Ni/La2O3/Al2O3 catalysts[J] . Chinese Journal of Catalysis,2009,30(11):1076 − 1084. doi: 10.1016/S1872-2067(08)60139-4 [37] GUO J J, LOU H, ZHENG X M. The deposition of coke from methane on a Ni/MgAl2O4 catalyst[J] . Carbon,2007,45(6):1314 − 1321. doi: 10.1016/j.carbon.2007.01.011 [38] YAO Z W, JIANG J, ZHAO Y, et al. Insights into the deactivation mechanism of metal carbide catalysts for dry reforming of methane via comparison of nickel-modified molybdenum and tungsten carbides[J] . RSC advances,2016,6(24):19944 − 19951. doi: 10.1039/C5RA24815A
点击查看大图
计量
- 文章访问数: 716
- HTML全文浏览量: 250
- PDF下载量: 164
- 被引次数: 0