留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绝对节点坐标梁单元弹性力建模及模态仿真的常见方法对比研究

周川 赵春花 独亚平 郭嘉辉

周川, 赵春花, 独亚平, 郭嘉辉. 绝对节点坐标梁单元弹性力建模及模态仿真的常见方法对比研究[J]. 上海工程技术大学学报, 2022, 36(2): 196-204. doi: 10.12299/jsues.22-0003
引用本文: 周川, 赵春花, 独亚平, 郭嘉辉. 绝对节点坐标梁单元弹性力建模及模态仿真的常见方法对比研究[J]. 上海工程技术大学学报, 2022, 36(2): 196-204. doi: 10.12299/jsues.22-0003
ZHOU Chuan, ZHAO Chunhua, DU Yaping, GUO Jiahui. Comparative study on common methods for elastic force modeling and modal simulation of beam elements with absolute nodal coordinates[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 196-204. doi: 10.12299/jsues.22-0003
Citation: ZHOU Chuan, ZHAO Chunhua, DU Yaping, GUO Jiahui. Comparative study on common methods for elastic force modeling and modal simulation of beam elements with absolute nodal coordinates[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 196-204. doi: 10.12299/jsues.22-0003

绝对节点坐标梁单元弹性力建模及模态仿真的常见方法对比研究

doi: 10.12299/jsues.22-0003
详细信息
    作者简介:

    周川:周 川(1996−),男,在读硕士,研究方向为基于模态分析的绝对节点坐标剪切梁单元多项式位移模式构建及力学特性分析. E-mail:1835169677@qq.om

    通讯作者:

    赵春花(1982−),女,讲师,博士,研究方向为基于绝对节点坐标法的柔性多体系统动力学建模理论. E-mail:zchh226@163.com

  • 中图分类号: TU311.3

Comparative study on common methods for elastic force modeling and modal simulation of beam elements with absolute nodal coordinates

  • 摘要:

    通过理论推导和数值分析,研究二维绝对节点坐标梁单元在不同弹性力建模方法下的模态参数. 介绍连续介质力学、增强连续介质力学以及应变分解法,并推导应变分解法应用的局限性,从理论角度说明了3种方法的特点. 基于广义特征方程得到不同弹性力建模方法下的绝对节点坐标梁单元的4种固有模态,以简支梁结构为例,分析绝对节点坐标梁单元弹性力建模方法对4种固有模态的作用规律. 不同弹性力建模方法下,横向低阶单元的4种固有频率相较横向高阶单元更高,表现得更“刚”. 连续介质力学方法下,各单元的低阶剪切固有频率与解析解存在20%~30%误差,而应变分解法和增强连续介质力学方法能够将剪切固有频率的误差控制在4%内,提高单元收敛精度.

  • 图  1  简支梁模型

    Figure  1.  Simple beam model

    图  2  单元1~4阶弯曲固有频率及其与解析解的误差

    Figure  2.  1~4th order bending natural frequency of each element and its error from analytical solution

    图  3  1~4阶轴向固有频率及其误差

    Figure  3.  1~4 order axial natural frequency and its error

    图  4  1~4阶剪切固有频率及其误差

    Figure  4.  1~4 order shear natural frequency and its error

    表  1  梁单元位移模式

    Table  1.   Displacement mode of beam element


    单元
    位移模式
    LO$ {a_0} + {a_1}x + {a_2}y + {a_3}xy + {a_4}{x^2} + {a_5}{x^3} $
    HP$ {a_0} + {a_1}x + {a_2}y + {a_3}xy + {a_4}{x^2} + {a_5}{y^2} + {a_6}x{y^2} + {a_7}{x^3} $
    下载: 导出CSV

    表  2  不同方法下,单元前4阶弯曲固有频率及其振型

    Table  2.   The first four-order bending natural frequencies of element and its mode shape under different methods

    阶次/(rad•s−1一般连续介质力学增强连续介质力学ECM应变分裂法SSM解析解
    Analytical
    GCM−LOGCM−HPECM−LOECM−HPSSM−LOSSM−HP
    1阶96.68
    92.53
    95.64
    95.34
    102.49
    95.63
    2阶315.27
    303.27
    332.26
    329.23
    351.38
    332.23
    3阶572.41
    552.60
    635.78
    626.34
    664.51
    635.70
    4阶838.55
    809.56
    965.92
    946.56
    1000.40
    965.74
    下载: 导出CSV

    表  3  不同方法下单元前4阶轴向固有频率及其振型

    Table  3.   The first four order axial natural frequencies of the element and its mode shape under different methods

    阶次/(rad•s−1一般连续介质力学增强连续介质力学应变分裂法解析解
    Analytical
    GCM−LOGCM−HPECM−LOECM-HPSSM−LOSSM−HP
    1阶280.24
    256.15
    280.25
    259.39
    280.26
    280.32
    2阶838.55
    768.59
    838.93
    777.20
    839.37
    840.96
    3阶1389.33
    1278.87
    1391.42
    1290.46
    1393.77
    1401.60
    4阶1922.95
    1776.64
    1930.48
    1788.00
    1938.46
    1962.24
    下载: 导出CSV

    表  4  不同方法下单元前4阶剪切固有频率及其振型

    Table  4.   The first four orders of shear natural frequencies of the element and its mode shapes under different methods

    阶次/(rad•s−1一般连续介质力学增强连续介质力学应变分裂法解析解
    GCM−LOGCM−HPECM−LOECM−HPSSM−LOSSM−HP
    1阶1355.48
    1301.59
    1766.99
    1740.43
    1766.99
    1767.0
    2阶1494.61
    1439.69
    1878.88
    1788.73
    1892.26
    1878.9
    3阶1833.47
    1750.94
    2163.39
    2091.25
    2207.82
    2163.3
    4阶2272.39
    2189.80
    2544.14
    2465.01
    2627.13
    2543.9
    下载: 导出CSV

    表  5  不同方法下单元的1阶厚度固有频率及其振型

    Table  5.   Natural frequency of the 1st order thickness of the element and its mode shape under different methods

    阶次/(rad•s−1一般连续介质力学增强连续介质力学应变分裂法解析解
    GCM−LOGCM−HPECM−LOECM−HPSSM−LOSSM−HP
    1阶3243.06
    3243.79
    3246.76
    3221.32
    3238.66
    3227.84
    下载: 导出CSV

    表  6  计算效率对比

    Table  6.   Comparison of calculation efficiency

    耗时/s一般连续介质力学GCM增强连续介质力学ECM应变分裂法SSM
    GCM−LOGCM−HPECM−LOECM−HPSSM−LOSSM−HP
    8单元12.2124.837.8826.2331.28
    16单元22.5546.9913.1547.1858.69
    32单元44.8298.2425.5198.42112.68
    下载: 导出CSV
  • [1] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies[R]. Chicago: University of Illinois at Chicago, 1996.
    [2] SCHIEHLEN W. Technishce dynamik stuttgrt teubner[M]. Stuttgrt: Teubner, 1986.
    [3] KANE T R, LEVINSON D. Dynamics, theory and applications[M]. New York: McGraw-Hill, 1985.
    [4] HAUG E J. Computer-aided kinematics and dynamics of mechanical systems: Basic methods[M]. Boston: Allyn and Bacon, 1989.
    [5] GARCIA J J, BAYO E. Mechanical engineering Series[M]. New York: Springer, 1994.
    [6] TURCIC D A, MIDHA A. Dynamic analysis of elastic mechanism systems, Part I: Applications[J] . Journal of Dynamic Systems Measurement & Control,1984,106(4):249 − 254.
    [7] OMAR M A, SHABANA A A. A two-dimensional shear deformable beam for large rotation and deformation problems[J] . Journal of Sound and Vibration,2001,243(3):565 − 576. doi: 10.1006/jsvi.2000.3416
    [8] 张大羽, 罗建军, 王辉, 等. ANCF/CRBF平面梁闭锁问题及闭锁缓解研究[J] . 力学学报,2021,53(3):874 − 889. doi: 10.6052/0459-1879-20-296
    [9] SHEN Z X, LI P, LIU C, et al. A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation[J] . Nonlinear Dynamics,2014,77(3):1 − 15.
    [10] ZHAO C H, BAO K W, TAO Y L. Transversally higher-order interpolating polynomials for the two-dimensional shear deformable ANCF beam elements based on common coefficients[J] . Multibody System Dynamics,2021,51(3):1 − 21.
    [11] PATEL M, SHABANA A A. Locking alleviation in the large displacement analysis of beam elements: the strain split method[J] . Acta Mechanica,2018,229(7):2923 − 2946. doi: 10.1007/s00707-018-2131-5
    [12] GERSTMAYR J, MATIKAINEN M K, MIKKOLA A M. A geometrically exact beam element based on the absolute nodal coordinate formulation[J] . Multibody System Dynamics,2008,20(4):359 − 384. doi: 10.1007/s11044-008-9125-3
    [13] SCHWAB A L, MEIJAARD J P. Comparison of three-dimensional flexible beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation[J] . Journal of Computational and Nonlinear Dynamics,2009,5(1):11010.
    [14] 范纪华, 章定国, 谌宏. 基于绝对节点坐标法的弹性线方法研究[J] . 力学学报,2019,51(5):1455 − 1465. doi: 10.6052/0459-1879-19-076
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  455
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回