| 
	                    [1]
	                 | 
				
					张文钺. 焊接冶金学(基本原理)[M]. 北京: 机械工业出版社, 2003: 16.
					 | 
			
		
				| 
	                    [2]
	                 | 
				
					CHEN S J, ZHAO L B, WANG J J, et al. Microstructure evolution and mechanical properties of simulated HAZ in a Ni-17Mo-7Cr superalloy: effects of the welding thermal cycles[J] . Journal of Materials Science,2020,55(27):13372 − 13388. doi:  10.1007/s10853-020-04927-6
					 | 
			
		
				| 
	                    [3]
	                 | 
				
					ZHANG J, XIN W B, LUO G P, et al. Effect of welding heat input on microstructural evolution, precipitation behavior and resultant properties of the simulated CGHAZ in high-N V-alloyed steel[J] . Materials Characterization,2020,162:110201. doi:  10.1016/j.matchar.2020.110201
					 | 
			
		
				| 
	                    [4]
	                 | 
				
					YU F Y, WEI Y H, LIU X B. The evolution of polycrystalline solidification in the entire weld: A phase-field investigation[J] . International Journal of Heat and Mass Transfer,2019,142:118450. doi:  10.1016/j.ijheatmasstransfer.2019.118450
					 | 
			
		
				| 
	                    [5]
	                 | 
				
					BEHNAGH R A, SAMANTA A, POUR M A M, et al. Predicting microstructure evolution for friction stir extrusion using a cellular automaton method[J] . Modelling and Simulation in Materials Science and Engineering,2019,27(3):1.
					 | 
			
		
				| 
	                    [6]
	                 | 
				
					ZHANG Z, HU C P. 3D Monte Carlo simulation of grain growth in friction stir welding[J] . Journal of Mechanical Science and Technology,2018,32(3):1287 − 1296. doi:  10.1007/s12206-018-0233-6
					 | 
			
		
				| 
	                    [7]
	                 | 
				
					WANG L W, LIU Z Y, CUI Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J] . Corrosion Science,2014,85:401 − 410. doi:  10.1016/j.corsci.2014.04.053
					 | 
			
		
				| 
	                    [8]
	                 | 
				
					RECCAGNI P, GUILHERME L H, LU Q, et al. Reduction of austenite-ferrite galvanic activity in the heat-affected zone of a Gleeble-simulated grade 2205 duplex stainless steel weld[J] . Corrosion Science,2019,161:108198. doi:  10.1016/j.corsci.2019.108198
					 | 
			
		
				| 
	                    [9]
	                 | 
				
					POPOOLAA A P I, OLUWASRGUN K M, OLORUNNIWO O E, et al. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity[J] . Journal of Alloys and Compounds,2016,666:482 − 492. doi:  10.1016/j.jallcom.2016.01.012
					 | 
			
		
				| 
	                    [10]
	                 | 
				
					SKLENICKA V, KUCHAROVA K, SVOBODA M, et al. Creep behaviour of IN 740 alloy after HAZ thermal cycle simulations[J] . International Journal of Pressure Vessels and Piping,2019,178:104000. doi:  10.1016/j.ijpvp.2019.104000
					 | 
			
		
				| 
	                    [11]
	                 | 
				
					JEONG S, PARK G, KIM B, et al. Precipitation behavior and its effect on mechanical properties in weld heat-affected zone in age hardened FeMnAlC lightweight steels[J] . Materials Science and Engineering:A,2019,742:61 − 68.
					 | 
			
		
				| 
	                    [12]
	                 | 
				
					KUMAR K, MASANTA M, KUMAR SAHOO S. Microstructure evolution and metallurgical characteristic of bead-on-plate TIG welding of Ti-6Al-4V alloy[J] . Journal of Materials Processing Technology,2019,265:34 − 43. doi:  10.1016/j.jmatprotec.2018.10.002
					 | 
			
		
				| 
	                    [13]
	                 | 
				
					KAR A, YADAV D, SUWAS S, et al. Role of plastic deformation mechanisms during the microstructural evolution and intermetallics formation in dissimilar friction stir weld[J] . Materials Characterization,2020,164:110371. doi:  10.1016/j.matchar.2020.110371
					 | 
			
		
				| 
	                    [14]
	                 | 
				
					孙景峰, 郑子樵, 林毅, 等. 2060合金FSW接头微观组织与力学性能[J] . 中国有色金属学报,2014,24(2):364 − 370.
					 | 
			
		
				| 
	                    [15]
	                 | 
				
					杜波, 孙转平, 杨新岐, 等. 异种铝合金摩擦塞补焊接头微观组织及性能[J] . 机械工程学报,2017,53(4):43 − 48.
					 | 
			
		
				| 
	                    [16]
	                 | 
				
					ZHANG J, LENG J, WANG C. Tuning weld metal mechanical responses via welding flux optimization of TiO2 content: Application into EH36 shipbuilding steel[J] . Metallurgical and Materials Transactions B,2019,50(5):2083 − 2087. doi:  10.1007/s11663-019-01645-6
					 | 
			
		
				| 
	                    [17]
	                 | 
				
					GAO Y A, HUANG L J, AN Q, et al. Microstructure evolution and mechanical properties of titanium matrix composites and Ni-based superalloy joints with Cu interlayer[J] . Journal of Alloys and Compounds,2018,764:665 − 673. doi:  10.1016/j.jallcom.2018.06.107
					 | 
			
		
				| 
	                    [18]
	                 | 
				
					LIU J, LIU H, GAO X L, et al. Microstructure and mechanical properties of laser welding of Ti-6Al-4V to Inconel 718 using Nb/Cu interlayer[J] . Journal of Materials Processing Technology,2020,277:116467. doi:  10.1016/j.jmatprotec.2019.116467
					 | 
			
		
				| 
	                    [19]
	                 | 
				
					张丽娟, 周惦武, 刘金水, 等. 钢/铝异种金属添加粉末的激光焊接[J] . 中国有色金属学报,2013,23(12):3401 − 3409.
					 | 
			
		
				| 
	                    [20]
	                 | 
				
					王鹏潇. 5052铝合金/钢熔钎焊界面反应行为的研究[D]. 大连: 大连理工大学, 2019.
					 | 
			
		
				| 
	                    [21]
	                 | 
				
					范萌. 窄间距Cu/Sn-3.0Ag-0.5Cu/Ni焊点液-固界面反应[D]. 大连: 大连理工大学, 2017.
					 | 
			
		
				| 
	                    [22]
	                 | 
				
					LANGER J S. Models of pattern formation in first-order phase transitions, chapter of Directions in Condensed Matter Physics [M]. Singapore: World Scientific, 1986.
					 | 
			
		
				| 
	                    [23]
	                 | 
				
					BECKERMANN C, DIEPERS H J, STEINBACH I, et al. Modeling melt convection in phase-field simulations of solidification[J] . Journal of Computational Physics,1999,154(2):468 − 496.
					 | 
			
		
				| 
	                    [24]
	                 | 
				
					BAILEY N S, HONG K M, SHIN Y C. Comparative assessment of dendrite growth and microstructure predictions during laser welding of Al 6061 via 2D and 3D phase field models[J] . Computational Materials Science,2020,172:109291. doi:  10.1016/j.commatsci.2019.109291
					 | 
			
		
				| 
	                    [25]
	                 | 
				
					魏艳红, 王勇, 董志波, 等. 纯金属TIG焊熔池等轴晶生长的相场法模拟[J] . 焊接学报,2011,32(3):1 − 4, 8, 113.
					 | 
			
		
				| 
	                    [26]
	                 | 
				
					AHLUWALIA R, LASKOWSKI R, NG N, et al. Phase Field Simulation of alpha/beta microstructure in titanium alloy welds[J] . Materials Research Express,2020,7(4):046517. doi:  10.1088/2053-1591/ab875a
					 | 
			
		
				| 
	                    [27]
	                 | 
				
					CHEN L, WANG C M, XIONG L D, et al. Microstructural, porosity and mechanical properties of lap joint laser welding for 5182 and 6061 dissimilar aluminum alloys under different place configurations[J] . Materials & Design,2020,191:108625.
					 | 
			
		
				| 
	                    [28]
	                 | 
				
					GENG S N, JIANG P, GUO L Y, et al. Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys[J] . International Journal of Heat and Mass Transfer,2020,149:119252. doi:  10.1016/j.ijheatmasstransfer.2019.119252
					 | 
			
		
				| 
	                    [29]
	                 | 
				
					CHOPARD B, DROZ M. 物理系统的元胞自动机模拟. 祝玉学, 赵学龙译[M]. 北京: 清华大学出版社, 2003.
					 | 
			
		
				| 
	                    [30]
	                 | 
				
					WU H, XU W C, WANG S B, et al. A cellular automaton coupled FEA model for hot deformation behavior of AZ61 magnesium alloys[J] . Journal of Alloys and Compounds,2020,816:152562. doi:  10.1016/j.jallcom.2019.152562
					 | 
			
		
				| 
	                    [31]
	                 | 
				
					ALAVI P, SERAJZADEH S. Microstructural changes during static recrystallization of austenitic stainless steel 304L: Cellular automata simulation[J] . Metallography, Microstructure, and Analysis,2020,9(2):223 − 238.
					 | 
			
		
				| 
	                    [32]
	                 | 
				
					STEFAN-KHARICHA M, KHARICHA A, ZAIDAT K, et al. Impact of hydrodynamics on growth and morphology of faceted crystals[J] . Journal of Crystal Growth,2020,541:125667. doi:  10.1016/j.jcrysgro.2020.125667
					 | 
			
		
				| 
	                    [33]
	                 | 
				
					ZHANG M, ZHOU Y L, HUANG C, et al. Simulation of temperature distribution and microstructure evolution in the molten pool of GTAW Ti-6Al-4V Alloy[J] . Materials,2018,11(11):2288. doi:  10.3390/ma11112288
					 | 
			
		
				| 
	                    [34]
	                 | 
				
					刘仁培, 陈莉莉, 魏艳红. 镍基合金TIG焊接熔池及热影响区组织模拟[J] . 焊接学报,2020,41(3):64 − 68, 100.
					 | 
			
		
				| 
	                    [35]
	                 | 
				
					ASADI P, BESHARATI GIVI M K, AKBARI M. Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy[J] . International Journal of Advanced Manufacturing Technology,2016,83(1-4):301 − 311. doi:  10.1007/s00170-015-7595-z
					 | 
			
		
				| 
	                    [36]
	                 | 
				
					王忠堂, 张宏亮, 杨君宝, 等. 基于元胞自动机的AZ31镁合金复合变形动态再结晶组织演变规律[J] . 塑性工程学报,2020,27(5):161 − 166. doi:  10.3969/j.issn.1007-2012.2020.05.020
					 | 
			
		
				| 
	                    [37]
	                 | 
				
					ROLLETT A D, SROLOVITZ D J, DOHERTY R D, et al. Computer simulation of recrystallization in non-uniformly deformed metals[J] . Acta Metallurgica,1989,37(2):627 − 639. doi:  10.1016/0001-6160(89)90247-2
					 | 
			
		
				| 
	                    [38]
	                 | 
				
					SROLOVITZ D J, ANDERSON M P, SAHNI P S, et al. Computer simulation of grain growth–II. grain size distribution, topology, and local dynamics[J] . Acta Metallurgica,1984,32(5):793 − 802. doi:  10.1016/0001-6160(84)90152-4
					 | 
			
		
				| 
	                    [39]
	                 | 
				
					LING S, ANDERSON M P. Development and evolution of thin film microstructures: A Monte Carlo approach[J] . Journal of Electronic Materials,1988,17(5):459 − 466. doi:  10.1007/BF02652133
					 | 
			
		
				| 
	                    [40]
	                 | 
				
					CHRISTIAEN B, DOMAIN C, THUINET L, et al. Influence of vacancy diffusional anisotropy: Understanding the growth of zirconium alloys under irradiation and their microstructure evolution[J] . Acta Materialia,2020,195:631 − 644. doi:  10.1016/j.actamat.2020.06.004
					 | 
			
		
				| 
	                    [41]
	                 | 
				
					TRAN A, MITCHELL J A, SWILER L P, et al. An active learning high-throughput microstructure calibration framework for solving inverse structure-process problems in materials informatics[J] . Acta Materialia,2020,194:80 − 92. doi:  10.1016/j.actamat.2020.04.054
					 | 
			
		
				| 
	                    [42]
	                 | 
				
					CHEN K T, HAN J, SROLOVITZ D J. On the temperature dependence of grain boundary mobility[J] . Acta Materialia,2020,194:412 − 421. doi:  10.1016/j.actamat.2020.04.057
					 | 
			
		
				| 
	                    [43]
	                 | 
				
					SON Y, CHUNG H B, LEE S. A two-dimensional Monte Carlo model for pore densification in a bi-crystal via grain boundary diffusion: Effect of diffusion rate, initial pore distance, temperature, boundary energy and number of pores[J] . Journal of the European Ceramic Society,2020,40(8):3158 − 3171. doi:  10.1016/j.jeurceramsoc.2020.02.022
					 | 
			
		
				| 
	                    [44]
	                 | 
				
					杨亮, 魏承炀, 雷力明, 等. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟[J] . 物理学报,2013,62(18):348 − 356.
					 | 
			
		
				| 
	                    [45]
	                 | 
				
					GRUJICIC M, RAMASWAMI S, SNIPES J S, et al. Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the Monte Carlo simulation method[J] . Journal of Materials Engineering & Performance,2015,24(9):3471 − 3486.
					 | 
			
		
				| 
	                    [46]
	                 | 
				
					ZHANG Z, TAN Z J. Integrated modelling of tool wear and microstructural evolution internal relations in friction stir welding with worn pin profiles[J] . Journal of Mechanics of Materials and Structures,2019,14(4):537 − 548. doi:  10.2140/jomms.2019.14.537
					 | 
			
		
				| 
	                    [47]
	                 | 
				
					RODGERS T M, MITCHELL J A, TIKARE V. A Monte Carlo model for 3D grain evolution during welding[J] . Modelling and Simulation in Materials Science and Engineering,2017,25(6):064006. doi:  10.1088/1361-651X/aa7f20
					 |