Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0–1膨胀几何分布的客观贝叶斯分析

肖翔 古晞

肖翔, 古晞. 0–1膨胀几何分布的客观贝叶斯分析[J]. 上海工程技术大学学报, 2021, 35(3): 266-271.
引用本文: 肖翔, 古晞. 0–1膨胀几何分布的客观贝叶斯分析[J]. 上海工程技术大学学报, 2021, 35(3): 266-271.
XIAO Xiang, GU Xi. Objective Bayesian analysis of zero-and-one-inflated geometric distribution[J]. Journal of Shanghai University of Engineering Science, 2021, 35(3): 266-271.
Citation: XIAO Xiang, GU Xi. Objective Bayesian analysis of zero-and-one-inflated geometric distribution[J]. Journal of Shanghai University of Engineering Science, 2021, 35(3): 266-271.

0–1膨胀几何分布的客观贝叶斯分析

基金项目: 全国统计科学研究资助项目(2020LY080)
详细信息
    作者简介:

    肖翔:肖 翔(1980−),男,讲师,硕士,研究方向为统计学. E-mail:xiaoxiang@sues.edu.cn

  • 中图分类号: O212.1

Objective Bayesian analysis of zero-and-one-inflated geometric distribution

  • 摘要: 在医疗卫生、金融证券等应用领域,经常会同时出现零观测值、一观测值较多的情况. 为更好地拟合这类数据,提出0–1膨胀几何分布模型并进行客观贝叶斯分析. 通过参数变换,得到Jeffreys先验和reference先验. 设计后验分布的抽样算法,设置不同的样本量和参数真值,采用数值模拟方法对不同客观先验下的估计效果进行评估.
  • 在医疗卫生、保险金融及可靠性等许多实际应用领域,样本数据不仅会出现零过多的情况,也会出现一过多的情况. 例如,在新型冠状病毒(COVID–19)大流行时,个体感染COVID–19后,自身就会产生抗体,使其感染次数最多可能一次. 又如,在商场买衣服时,出于货比三家的心理,很多顾客没有购买衣服或者只购买一件衣服.

    近年来,国内外很多文献对0–1膨胀泊松分布模型进行了深入研究,取得丰富的研究成果. 田震[1]基于数据删失和加权扰动模型对0–1膨胀泊松分布模型进行统计推断. Tang等[2]构造0–1膨胀泊松分布模型的等价表达式,采用极大似然估计与贝叶斯方法对新加坡军团菌感染病例数据进行研究. Liu等[3]利用广义最大期望(EM)算法对0–1膨胀泊松分布回归模型中的参数进行估计,对美国底特律城市交通事故死亡数据进行拟合. 夏丽丽等[4]使用局部多项式核回归法对0–1膨胀泊松分布模型进行参数估计,通过对北京市糖尿病患者数据的分析,验证了局部多项式核回归方法的有效性.

    对于0–1膨胀泊松分布模型,当数据存在较大变异时,即样本均值与样本方差不相等时,如果仍然用模型进行拟合,效果往往不好. 而0–1膨胀几何分布模型,不仅可以用于处理样本数据的变异,也适应于样本尾部数据退化较慢的情形. 对于0–1膨胀几何分布及其回归模型,目前研究文献较少,肖翔[5]利用贝叶斯方法对0–1膨胀几何分布回归模型进行参数估计,Xiao等[6]基于Polya-Gamma潜变量设计0–1膨胀几何分布回归模型中后验样本的抽样机制. 本研究对0–1膨胀几何分布模型进行参数变换,计算出客观贝叶斯先验,以期得到更好的拟合效果.

    本研究提出0–1膨胀几何分布(简称为ZOIGE)模型,即一个非负的0-1膨胀几何分布的随机变量Y,可以表示为Y=V(1B1)+B1(1B2). 其中,B1B2V相互独立,B1为一个试验成功概率为p1的伯努利随机变量;B2为一个试验成功概率为p2的伯努利随机变量;V为一个服从于试验成功概率为θ的几何分布随机变量,即P(V=k)=θk(1θ)k=0,1,. 随机变量Y的分布律为

    P(Y=k)={p1p2+(1p1)(1θ)k=0p1(1p2)+(1p1)θ(1θ)k=1(1p1)θk(1θ)k=2,3, (1)

    式中:0p110p210θ1. 可以看出,0–1膨胀几何分布是由伯努利分布与几何分布按照比例p11p1组成的混合分布. 当p2=1时,ZOIGE变成零膨胀几何分布(ZIGE)[7-8],当p1=0时,ZOIGE退化成几何分布.

    进行参数变换,令

    {q1=p1p2+(1p1)(1θ)q2=p1(1p2)+(1p1)θ(1θ) (2)

    可得

    1p1=1q1q2θ2 (3)

    通过上述重参数化,式(1)变为

    P(Y=k){q1k=0q2k=1(1q1q2)θk2(1θ)k=2,3, (4)

    式中:q10q20q1+q210θ1.

    Y=(Y1,Y2,,Yn)为取自0–1膨胀几何分布的观测值,由式(4)得出似然函数公式为

    L(p1,p2,θ|Y)=qS01qS12(1q1q2)nS0S1×θS2(nS0S1)(1θ)nS0S1 (5)

    式中:S0=#{i:Yi=0}为集合{i:Yi=0}中包含元素的个数;S1=#{i:Yi=1}为集合{i:Yi=1}中包含元素的个数;S2=Yi2Yi.

    式(5)两边取对数,得到对数似然函数为

    lnL(p1,p2,θ|Y)=S0lnq1+S1lnq2+(nS0S1)ln(1q1q2)+[S2(nS0S1)]lnθ+(nS0S1)ln(1θ) (6)

    计算随机变量Y,S0,S1,S的期望为

    E(Y)=q2+k=2(1q1q2)kθk2(1θ)=q2+(1q1q2)2θ1θ
    E(S0)=nq1E(S1)=nq2E(S)=n(E(Y)q2)=n(1q1q2)2θ1θ

    计算对数似然函数式(6)的一阶偏导数为

    lnLq1=S0q1nS0S11q1q2lnLq2=S1q2nS0S11q1q2lnLθ=S2(nS0S1)θnS0S11θ

    计算对数似然函数式(6)的二阶偏导数为

    2lnLq21=S0q21nS0S1(1q1q2)22lnLq22=S1q22nS0S1(1q1q2)2
    2lnLθ2=S2(nS0S1)θ2nS0S1(1θ)2
    2lnLq1q2=2lnLq2q1=nS0S1(1q1q2)2
    2lnLq1θ=2lnLθq1=02lnLq2θ=2lnLθq2=0

    进一步计算二阶偏导数期望的相反数,它们是Fisher信息阵的组成元素. 表达式为

    E(2lnLq21)=n(1q2)q1(1q1q2)E(2lnLq22)=n(1q1)q2(1q1q2)
    E(2lnLq1q2)=E(2lnLq2q1)=n1q1q2E(2lnLθ2)=n(1q1q2)θ(1θ)2

    因此,(q1,q2,θ)的Fisher信息阵为

    (q1,q2,θ)=(n(1q2)q1(1q1q2)n1q1q20n1q1q2n(1q1)q2(1q1q2)000n(1q1q2)θ(1θ)2) (7)

    与Laplace先验比较,Jeffreys先验能够在参数变换下保持不变性,比Laplace先验具有更广泛的应用场合[9]. 参数(q1,q2,θ)的Jeffreys先验与Fisher信息矩阵行列式的平方根成正比,通过式(7)可以计算(q1,q2,θ)的Jeffreys先验,公式为

    πJdet

    对于参数组合\{ ({q_1},{q_2}),\theta \} ({q_1},{q_2})为感兴趣的参数,Fisher信息矩阵\displaystyle\sum ({q_1},{q_2},\theta )可写成

    {\displaystyle\sum\nolimits_{1}} = \left[ {\begin{array}{*{20}{c}} {{\sum\nolimits _{11}}}&0 \\ 0&{{I_{33}}} \end{array}} \right]

    其中

    \begin{split}&{\displaystyle\sum \nolimits_{11}} = \left( {\begin{array}{*{20}{c}} {\dfrac{{n(1 - {q_2})}}{{{q_1}(1 - {q_1} - {q_2})}}}&{\dfrac{n}{{1 - {q_1} - {q_2}}}} \\ {\dfrac{n}{{1 - {q_1} - {q_2}}}}&{\dfrac{{n(1 - {q_1})}}{{{q_2}(1 - {q_1} - {q_2})}}} \end{array}} \right) \\&{I_{33}} = \dfrac{{n(1 - {q_1} - {q_2})}}{{\theta {{(1 - \theta )}^2}}} \end{split}

    根据文献[10],reference先验求解过程中,先求出{h_1}{h_2},公式为

    \begin{split}& {h_1} = \det \left({\displaystyle\sum\nolimits _{11}}\right) = \frac{{{n^2}}}{{{q_1}{q_2}(1 - {q_1} - {q_2})}} \\& {h_2} = {I_{33}} = \frac{{n(1 - {q_1} - {q_2})}}{{\theta {{(1 - \theta )}^2}}} \end{split}

    再完成以下4个步骤.

    步骤1 选取参数空间的一组紧子集为 {\Omega _i} = {\Omega _{12}} \times {\Omega _{3i}} = \{ ({q_1},{q_2})|0 < {q_1} < 1, 0 < {q_2} < 1 - {q_1}\} \times \{ \theta |{a_i} < \theta < {b_i}\} .使得当i \to \infty 时,有{a_i} \to 0{b_i} \to 1.通过换元法计算区域{\Omega _{12}}上的两个二重积分,公式为

    \left\{\begin{array}{l} \displaystyle\iint_{{\Omega _{12}}} {\dfrac{1}{{\sqrt {{q_1}{q_2}(1 - {q_1} - {q_2})} }}}{\rm{d}}{q_1}{\rm{d}}{q_2} = 2{\text{π}} \\ \displaystyle\iint_{{\Omega _{12}}} {\dfrac{{\log (1 - {q_1} - {q_2})}}{{\sqrt {{q_1}{q_2}(1 - {q_1} - {q_2})} }}}{\rm{d}}{q_1}{\rm{d}}{q_2} = - 4{\text{π}} \end{array}\right. (8)

    步骤2({q_1},{q_2})给定时,\theta 的条件先验为

    \begin{split} \pi _{R1}^i(\theta |{q_1},{q_2}) =& \frac{{\sqrt {{h_2}} {\Omega _{3i}}}}{{\displaystyle\int_{{\Omega _{3i}}} {\sqrt {{h_2}} {\rm{d}}\theta } }} =\\ &\frac{{\sqrt {n(1 - {q_1} - {q_2})} {\theta ^{ - 1/2}}{{(1 - \theta )}^{ - 1}}{\Omega _{3i}}}}{{\sqrt {n(1 - {q_1} - {q_2})} \displaystyle\int_{{a_i}}^{{b_i}} {{\theta ^{ - 1/2}}{{(1 - \theta )}^{ - 1}}{\rm{d}}\theta } }}= \\ & \dfrac{{{\theta ^{ - 1/2}}{{(1 - \theta )}^{ - 1}}{\Omega _{3i}}}}{{\log \dfrac{{(1 + {b_i})(1 - {a_i})}}{{(1 + {a_i})(1 - {b_i})}}}} \propto {\theta ^{ - 1/2}}{(1 - \theta )^{ - 1}}{\Omega _{3i}} \end{split}

    步骤3 结合式(8),({q_1},{q_2})的边缘先验为

    \qquad\qquad\qquad\begin{split} \pi _{R1}^i({q_1},{q_2}) =& \dfrac{{\exp \Bigg\{ \dfrac{1}{2}\displaystyle\int_{{\Omega _{3i}}} {\pi _{R1}^i(\theta\, |\,{q_1},\,{q_2}\,)\log ({h_1}){\rm{d}}\theta } \Bigg\} {\Omega _{12}}}}{{\displaystyle\iint_{{\Omega _{12}}} {\exp \Bigg\{ \dfrac{1}{2}\displaystyle\int_{{\Omega _{3i}}} {\pi _{R1}^i(\theta \, |\, {q_1},\, {q_2}\, )\log ({h_1}){\rm{d}}\theta } \Bigg\} {\rm{d}}{q_1}{\rm{d}}{q_2}}}} \propto\\& \dfrac{{\exp \Bigg\{ \dfrac{1}{2}\displaystyle\int_{{\Omega _{3i}}} {{\theta ^{ - 1/2}}{{(1 - \theta )}^{ - 1}}\log \Bigg(\dfrac{{{n^2}}}{{{q_1}{q_2}(1 - {q_1} - {q_2})}}\Bigg){\rm{d}}\theta } \Bigg\} {\Omega _{12}}}}{{\displaystyle\iint_{{\Omega _{12}}} {\exp \Bigg\{ \dfrac{1}{2}\displaystyle\int_{{\Omega _{3i}}} {{\theta ^{ - 1/2}}{{(1 - \theta )}^{ - 1}}\log \Bigg(\dfrac{{{n^2}}}{{{q_1}{q_2}(1 - {q_1} - {q_2})}}\Bigg)} {\rm{d}}\theta \Bigg\} {\rm{d}}{q_1}{\rm{d}}{q_2}}}} \propto\\& \dfrac{{{q_1}^{ - 1/2}q_2^{ - 1/2}{{(1 - {q_1} - {q_2})}^{ - 1/2}}\dfrac{{(1 + {b_i})(1 - {a_i})}}{{(1 + {a_i})(1 - {b_i})}}{\Omega _{12}}}}{{\dfrac{{(1 + {b_i})(1 - {a_i})}}{{(1 + {a_i})(1 - {b_i})}}\displaystyle\iint_{{\Omega _{12}}} {{q_1}^{ - 1/2}q_2^{ - 1/2}{{(1 - {q_1} - {q_2})}^{ - 1/2}}{\rm{d}}{q_1}{\rm{d}}{q_2}}}} \propto\\& \dfrac{{{q_1}^{ - 1/2}q_2^{ - 1/2}{{(1 - {q_1} - {q_2})}^{ - 1/2}}{\Omega _{12}}}}{{2{\text{π}} }} \propto {q_1}^{ - 1/2}q_2^{ - 1/2}{(1 - {q_1} - {q_2})^{ - 1/2}}{\Omega _{12}} \end{split}

    步骤4 {\varPhi}的reference先验为

    \begin{split}& {\pi _{R1}} = \mathop {\lim }\limits_{i \to \infty } \frac{{\pi _{R1}^i({q_1},{q_2})\pi _{R1}^i(\theta \, |\,{q_1},\,{q_2}\,)}}{{\pi _{R1}^i(q_1^*,q_2^*)\pi _{R1}^i({\theta \, ^*}\,|\,q_1^*,\,q_2^*)\,}} \propto \\&\quad {q_1}^{ - 1/2}q_2^{ - 1/2}{(1 - {q_1} - {q_2})^{ - 1/2}}{\theta ^{ - 1/2}}{(1 - \theta )^{ - 1}} \end{split}

    式中,q_1^*q_2^*{\theta ^*}为参数空间中事先给定的值.

    对于参数组合\{ \theta \,,\,({q_1},\,{q_2}\,)\}\theta 为感兴趣的参数,Fisher信息矩阵\displaystyle\sum ({q_1},{q_2},\theta )可写成

    {\displaystyle\sum\nolimits _2} = \left[ {\begin{array}{*{20}{c}} {{I_{33}}}&0 \\ 0&{{\sum\nolimits _{11}}} \end{array}} \right]

    得到

    \begin{split} & {h_1} = \dfrac{{n(1 - {q_1} - {q_2})}}{{\theta {{(1 - \theta )}^2}}}\\ & {h_2} = \dfrac{{{n^2}}}{{{q_1}{q_2}(1 - {q_1} - {q_2})}} \end{split}

    步骤1 选取与\{\, ({q_1},\,{q_2}),\,\theta \,\}参数空间中相同的一组紧子集.

    步骤2\theta 给定时,结合式(8),({q_1},{q_2})的条件先验为

    \begin{split} \pi _{R2}^i({q_1},{q_2}|\theta ) = &\dfrac{{\sqrt {{h_2}} {\Omega _{12}}}}{{\displaystyle\iint_{{\Omega _{12}}} {\sqrt {{h_2}} {\rm{d}}{q_1}{\rm{d}}{q_2}}}} =\\&\dfrac{{\sqrt {\dfrac{{{n^2}}}{{{q_1}{q_2}(1 - {q_1} - {q_2})}}} {\Omega _{12}}}}{{\displaystyle\iint_{{\Omega _{12}}} {\sqrt {\dfrac{{{n^2}}}{{{q_1}{q_2}(1 - {q_1} - {q_2})}}} {\rm{d}}{q_1}{\rm{d}}{q_2}}}} =\\& \dfrac{{{q_1}^{ - 1/2}q_2^{ - 1/2}{{(1 - {q_1} - {q_2})}^{ - 1/2}}{\Omega _{12}}}}{{2{\text{π}} }}\propto \\& {q_1}^{ - 1/2}q_2^{ - 1/2}{(1 - {q_1} - {q_2})^{ - 1/2}}{\Omega _{12}}\end{split}

    步骤3 结合式(8),\theta 的边缘先验为

    \qquad\qquad\begin{split} \pi _{R2}^i(\theta ) =& \dfrac{{\exp \left\{ \dfrac{1}{2}\displaystyle\iint_{{\Omega _{12}}} {\pi _{R2}^i(\,{q_1},\,{q_2}\,|\,\theta \,)\log ({h_1}){\rm{d}}{q_1}{\rm{d}}{q_2}}\right\} {\Omega _{3i}}}}{{\displaystyle\int_{{\Omega _{3i}}} {\exp \left\{ \dfrac{1}{2}\displaystyle\iint_{{\Omega _{12}}} {\pi _{R2}^i(\,{q_1},\,{q_2}\,|\,\theta \,)\log ({h_1}){\rm{d}}{q_1}{\rm{d}}{q_2}}\right\} {\rm{d}}\theta } }} =\\& \dfrac{{\exp \left\{ \dfrac{1}{2}\displaystyle\iint_{{\Omega _{12}}} {{q_1}^{ - 1/2}q_2^{ - 1/2}{{(1 - {q_1} - {q_2})}^{ - 1/2}}\log \dfrac{{n(1 - {q_1} - {q_2})}}{{\theta {{(1 - \theta )}^2}}}{\rm{d}}{q_1}{\rm{d}}{q_2}}\right\} {\Omega _{3i}}}}{{\displaystyle\int_{{\Omega _{3i}}} {\exp \left\{ \dfrac{1}{2}\displaystyle\iint_{{\Omega _{12}}} {{q_1}^{ - 1/2}q_2^{ - 1/2}{{(1 - {q_1} - {q_2})}^{ - 1/2}}\log \dfrac{{n(1 - {q_1} - {q_2})}}{{\theta {{(1 - \theta )}^2}}}{\rm{d}}{q_1}{\rm{d}}{q_2}}\right\} {\rm{d}}\theta } }}= \\& \dfrac{{\exp \left\{ \dfrac{1}{2}\displaystyle\iint_{{\Omega _{12}}} {\left[ {\dfrac{{\log (1 - {q_1} - {q_2})}}{{\sqrt {{q_1}{q_2}(1 - {q_1} - {q_2})} }} + \dfrac{1}{{\sqrt {{q_1}{q_2}(1 - {q_1} - {q_2})} }}\log \dfrac{n}{{\theta {{(1 - \theta )}^2}}}} \right]{\rm{d}}{q_1}{\rm{d}}{q_2}}\right\} {\Omega _{3i}}}}{{\displaystyle\int_{{\Omega _{3i}}} {\exp \left\{ \dfrac{1}{2}\displaystyle\iint_{{\Omega _{12}}} {\left[ {\dfrac{{\log (1 - {q_1} - {q_2})}}{{\sqrt {{q_1}{q_2}(1 - {q_1} - {q_2})} }} + \dfrac{1}{{\sqrt {{q_1}{q_2}(1 - {q_1} - {q_2})} }}\log \dfrac{n}{{\theta {{(1 - \theta )}^2}}}} \right]{\rm{d}}{q_1}{\rm{d}}{q_2}}\right\} {\rm{d}}\theta } }} = \end{split}
    \qquad\qquad\qquad \dfrac{{\exp \left\{ - 2{\text{π}} + {\text{π}} \log \dfrac{n}{{\theta {{(1 - \theta )}^2}}}\right\} {\Omega _{3i}}}}{{\displaystyle\int_{{\Omega _{3i}}} {\exp \left\{ - 2{\text{π}} + {\text{π}} \log \dfrac{n}{{\theta {{(1 - \theta )}^2}}}\right\} {\rm{d}}\theta } }} = \dfrac{{{{\rm{e}}^{ - 2{\text{π}} }}{{\left( {\dfrac{n}{{\theta {{(1 - \theta )}^2}}}} \right)}^{\text{π}} }{\Omega _{3i}}}}{{{{\rm{e}}^{ - 2{\text{π}} }}\displaystyle\int_{{a_i}}^{{b_i}} {{{\left( {\dfrac{n}{{\theta {{(1 - \theta )}^2}}}} \right)}^{\text{π}} }{\rm{d}}\theta } }} \propto {\theta ^{ - {\text{π}} }}{(1 - \theta )^{ - 2{\text{π}} }}{\Omega _{3i}}

    步骤4 \varPhi 的reference先验为

    \begin{split} {\pi _{R2}} =& \mathop {\lim }\limits_{i \to \infty } \frac{{\pi _{R2}^i(\theta )\pi _{R2}^i({q_1},{q_2}|\theta )}}{{\pi _{R2}^i({\theta ^*})\pi _{R2}^i(q_1^*,q_2^*|{\theta ^*})}} \propto \\& {q_1}^{ - 1/2} q_2^{ - 1/2}{(1 - {q_1} - {q_2})^{ - 1/2}}{\theta ^{ - {\text{π}} }}{(1 - \theta )^{ - 2{\text{π}} }} \end{split}

    式中:q_1^*q_2^*{\theta ^*}为参数空间中事先给定的值.

    基于先验分布{\pi _J}{\pi _{R1}}{\pi _{R2}},分别得到它们的后验分布,通过R软件进行抽样,获取后验样本. 以{\pi _{R1}}为例,({q_1},{q_2},\theta )的后验分布为

    {\pi _{R1}}({q_1},{q_2},\theta \,|\,Y) \propto L({q_1},{q_2},\theta \,|\,Y){\pi _{R1}} (9)

    式中:Y = ({Y_1},{Y_2}, \cdots ,{Y_n})为观测数据. 式(9)的具体形式为

    \begin{split}& {\pi _{R1}}({q_1},{q_2},\theta\, |\,Y) \propto \\&q_1^{{S_0} - \frac{1}{2}}q_2^{{S_1} - \frac{1}{2}}{(1 - {q_1} - {q_2})^{n - {S_0} - {S_1} - \frac{1}{2}}} \times \\&{\theta ^{S - 2(n - {S_0} - {S_1}) - \frac{1}{2}}}{(1 - \theta )^{n - {S_0} - {S_1} - 1}}\\[-13pt] \end{split} (10)

    从式(10)可以看出,({q_1},{q_2})的后验边缘分布为

    \begin{split} & {\pi _{R1}}({q_1},{q_2}\,|\,Y) \propto\\ &\quad q_1^{{S_0} - \frac{1}{2}}q_2^{{S_1} - \frac{1}{2}}{(1 - {q_1} - {q_2})^{n - {S_0} - {S_1} - \frac{1}{2}}} \end{split} (11)

    式(11)是形状参数为\Bigg({S_0} - \dfrac{1}{2},{S_1} - \dfrac{1}{2},n - {S_0} - {S_1} - \dfrac{1}{2}\Bigg) 的Dirichlet分布,可以调用R软件包中rdirichlet(N, alpha)函数进行抽样. 另一方面,\theta 的后验边缘分布为

    {\pi _{R1}}(\theta \,|\,Y) \propto {\theta ^{S - 2(n - {S_0} - {S_1}) - \frac{1}{2}}}{(1 - \theta )^{n - {S_0} - {S_1} - 1}} (12)

    从贝塔分布B(S - 2(n - {S_0} - {S_1}) + \dfrac{1}{2}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} n - {S_0} - {S_1})中可以抽样得到式(12)的样本. 通过参数变换表达式式(2)和式(3),({q_1},{q_2},\theta )的后验样本可转化为({p_1},{p_2},\theta )的后验样本.

    本节基于Jeffreys先验和reference先验,通过数值模拟对ZOIGE模型的参数进行估计. 样本容量分别设为n = 20n = 50\theta 值设为0.8{q_1}的值分别设为0.30.7{q_2}值分别设为0.40.6,所有模拟重复2000次,计算出参数估计量的均值和均方误差见表1表2. 从表中可以看出,随着样本容量的增加,3种客观贝叶斯先验下的估计值越来越接近真值,均方误差也越来越小. 对于{q_1}{q_2}的估计,{\pi _{R1}}{\pi _{R2}}{\pi _J}表现更好,这是因为在{\pi _{R1}}{\pi _{R2}}中包含{q_1}{q_2}的信息更加丰富. 对于\theta 的估计,{\pi _{R2}}{\pi _{R1}}{\pi _J}表现更好,这是因为在{\pi _{R2}}\theta 为感兴趣参数,集中了更多的样本信息.

    表  1  \theta = 0.8下参数估计量的均值
    Table  1.  Mean of parameter estimators when \theta = 0.8
    {q_1}{q_2}n{\theta _J}{q_{1J}}{q_{2J}}{\theta _{R1}}{q_{1R1}}{q_{2R1}}{\theta _{R2}}{q_{1R2}}{q_{2R2}}
    0.3 0.4 20 0.768 0.283 0.357 0.783 0.289 0.361 0.792 0.288 0.362
    50 0.779 0.284 0.374 0.787 0.291 0.388 0.793 0.289 0.387
    0.6 20 0.776 0.282 0.504 0.785 0.290 0.556 0.788 0.290 0.555
    50 0.781 0.287 0.584 0.791 0.302 0.592 0.792 0.298 0.594
    0.7 0.4 20 0.772 0.669 0.347 0.786 0.672 0.373 0.790 0.671 0.376
    50 0.787 0.685 0.376 0.792 0.694 0.388 0.794 0.693 0.386
    0.6 20 0.775 0.724 0.545 0.784 0.724 0.575 0.789 0.723 0.581
    50 0.791 0.721 0.569 0.793 0.716 0.594 0.795 0.715 0.593
    下载: 导出CSV 
    | 显示表格
    表  2  \theta = 0.8下参数估计量的均方误差
    Table  2.  Mean squared error of parameter estimators when \theta = 0.8
    {q_1}{q_2}n{\theta _J}{q_{1J}}{q_{2J}}{\theta _{R1}}{q_{1R1}}{q_{2R1}}{\theta _{R2}}{q_{1R2}}{q_{2R2}}
    0.30.4200.0830.0740.0980.0810.0720.0880.0790.0720.087
    500.0650.0370.0850.0620.0330.0750.0610.0340.075
    0.6200.0760.0720.0930.0780.0620.0920.0750.0630.091
    500.0610.0360.0720.0580.0240.0630.0550.0260.062
    0.70.4200.0870.0450.0960.0860.0410.0860.0840.0420.084
    500.0560.0380.0740.0660.0320.0730.0610.0350.072
    0.6200.0650.0370.0830.0720.0310.0820.0690.0320.081
    500.0570.0350.0780.0560.0260.0720.0450.0280.072
    下载: 导出CSV 
    | 显示表格

    本研究对0–1膨胀几何分布模型进行客观贝叶斯分析,巧妙地进行重参数化,写出具有分块对角形式的Fisher信息矩阵. 因而,较容易推导出参数的Jeffreys先验和reference先验,这种方法和技巧可以推广到其他形式的0–1膨胀分布模型中去.

  • 表  1  \theta = 0.8下参数估计量的均值

    Table  1.   Mean of parameter estimators when \theta = 0.8

    {q_1}{q_2}n{\theta _J}{q_{1J}}{q_{2J}}{\theta _{R1}}{q_{1R1}}{q_{2R1}}{\theta _{R2}}{q_{1R2}}{q_{2R2}}
    0.3 0.4 20 0.768 0.283 0.357 0.783 0.289 0.361 0.792 0.288 0.362
    50 0.779 0.284 0.374 0.787 0.291 0.388 0.793 0.289 0.387
    0.6 20 0.776 0.282 0.504 0.785 0.290 0.556 0.788 0.290 0.555
    50 0.781 0.287 0.584 0.791 0.302 0.592 0.792 0.298 0.594
    0.7 0.4 20 0.772 0.669 0.347 0.786 0.672 0.373 0.790 0.671 0.376
    50 0.787 0.685 0.376 0.792 0.694 0.388 0.794 0.693 0.386
    0.6 20 0.775 0.724 0.545 0.784 0.724 0.575 0.789 0.723 0.581
    50 0.791 0.721 0.569 0.793 0.716 0.594 0.795 0.715 0.593
    下载: 导出CSV

    表  2  \theta = 0.8下参数估计量的均方误差

    Table  2.   Mean squared error of parameter estimators when \theta = 0.8

    {q_1}{q_2}n{\theta _J}{q_{1J}}{q_{2J}}{\theta _{R1}}{q_{1R1}}{q_{2R1}}{\theta _{R2}}{q_{1R2}}{q_{2R2}}
    0.30.4200.0830.0740.0980.0810.0720.0880.0790.0720.087
    500.0650.0370.0850.0620.0330.0750.0610.0340.075
    0.6200.0760.0720.0930.0780.0620.0920.0750.0630.091
    500.0610.0360.0720.0580.0240.0630.0550.0260.062
    0.70.4200.0870.0450.0960.0860.0410.0860.0840.0420.084
    500.0560.0380.0740.0660.0320.0730.0610.0350.072
    0.6200.0650.0370.0830.0720.0310.0820.0690.0320.081
    500.0570.0350.0780.0560.0260.0720.0450.0280.072
    下载: 导出CSV
  • [1] 田震. 零一膨胀回归模型及其统计诊断[D]. 昆明: 云南大学, 2016.
    [2] TANG Y C, LIU W C, XU A C. Statistical inference for zero-and-one-inflated Poisson models[J] . Statistical Theory and Related Fields,2017,1(2):216 − 226. doi: 10.1080/24754269.2017.1400419
    [3] LIU W C, TANG Y C, XU A C. Zero-and-one-inflated Poisson regression model[J] . Statistical Papers,2019,62(2):1 − 20.
    [4] 夏丽丽, 田茂再. 零一膨胀泊松回归模型的非参数统计分析及其应用[J] . 数理统计与管理,2019,38(2):235 − 246.
    [5] 肖翔. 0–1膨胀几何分布回归模型及其应用[J] . 系统科学与数学,2019,39(9):1486 − 1499. doi: 10.12341/jssms13723
    [6] XIAO X, TANG Y C, XU A C, et al. Bayesian inference for zero-and-one-inflated geometric distribution regression model using Polya-Gamma latent variables[J] . Communication in Statistics-Theory and Method,2020,49(15):3730 − 3743. doi: 10.1080/03610926.2019.1709647
    [7] 肖翔, 刘福窑. 零膨胀几何分布的参数估计[J] . 上海工程技术大学学报,2018,32(3):267 − 271,277. doi: 10.3969/j.issn.1009-444X.2018.03.013
    [8] 肖翔, 王国强, 刘福窑, 等. 零膨胀几何分布回归模型及其统计分析[J] . 嘉兴学院学报,2020,32(6):25 − 30. doi: 10.3969/j.issn.1671-3079.2020.06.004
    [9] 茆诗松, 汤银才. 贝叶斯统计[M]. 2版. 北京: 中国统计出版社, 2012.
    [10] BERGER J O, BERNARDO J M. On the development of the reference prior method[J] . Bayesian Statistics,1992,4(4):35 − 60.
  • 期刊类型引用(3)

    1. 刘梦瑶,肖翔. 零一膨胀几何分布的统计分析及应用. 上海工程技术大学学报. 2024(02): 196-204 . 本站查看
    2. 陈慧倩,高金敏. 基于SD演化博弈的飞机租赁三方利益主体决策优化. 上海工程技术大学学报. 2024(02): 132-138+204 . 本站查看
    3. 肖翔,吴懿祺,古晞. 基于指数分布混合治愈模型的客观贝叶斯分析. 上海工程技术大学学报. 2021(04): 395-400 . 本站查看

    其他类型引用(0)

  • 加载中
计量
  • 文章访问数:  736
  • HTML全文浏览量:  482
  • PDF下载量:  431
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-05-06
  • 刊出日期:  2021-09-30

目录

/

返回文章
返回