留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GO/Au/Ag复合材料表面形貌调控及其表面增强拉曼效应

王勤生 杨永强 王玲 张艳

王勤生, 杨永强, 王玲, 张艳. GO/Au/Ag复合材料表面形貌调控及其表面增强拉曼效应[J]. 上海工程技术大学学报, 2020, 34(4): 314-319.
引用本文: 王勤生, 杨永强, 王玲, 张艳. GO/Au/Ag复合材料表面形貌调控及其表面增强拉曼效应[J]. 上海工程技术大学学报, 2020, 34(4): 314-319.
WANG Qinsheng, YANG Yongqiang, WANG Ling, ZHANG Yan. Surface Morphology Control and Surface Enhanced Raman Scattering Effect of GO/Au/Ag Composite[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 314-319.
Citation: WANG Qinsheng, YANG Yongqiang, WANG Ling, ZHANG Yan. Surface Morphology Control and Surface Enhanced Raman Scattering Effect of GO/Au/Ag Composite[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 314-319.

GO/Au/Ag复合材料表面形貌调控及其表面增强拉曼效应

基金项目: 国家自然科学基金资助项目(51602192);江苏省市场监督管理局科技资助项目(KJ196009);江苏省特种设备安全监督检验研究院科研基金资助项目(KJ(Y)2020037)
详细信息
    作者简介:

    王勤生(1974−),男,高级工程师,硕士,研究方向为石墨烯材料检验检测及其标准化. E-mail:wqs@wxtjy.com

    通讯作者:

    杨永强(1984−),男,高级工程师,博士,研究方向为碳基功能纳米材料制备、性能及应用,新材料检验检测及其标准化. E-mail:yqyang@wxtjy.com

  • 中图分类号: TB 383

Surface Morphology Control and Surface Enhanced Raman Scattering Effect of GO/Au/Ag Composite

  • 摘要: 表面增强拉曼散射光谱(SERS)因具有高灵敏及无损检测的特点,在化学检测领域受到广泛关注. 采用原位化学还原法,制备氧化石墨烯/金/银(GO/Au/Ag)复合材料,利用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、紫光—可见分光光度计(UV)等手段对复合材料结构进行表征,并深入研究不同Au/Ag比例对纳米复合材料形貌和SERS的影响. 以罗丹明6G (R6G)为探针分子,研究纳米复合材料的形态对表面增强拉曼散射的影响. 研究结果表明GO/Au/Ag复合材料具有良好的SERS增强效果,且SERS信号强度与样品表面形貌以及Au、Ag含量(质量分数,全文同)有关. Au/Ag纳米颗粒表面粗糙度以及Au、Ag含量的提高可以显著增加GO/Au/Ag复合材料的SERS效果.
  • 图  1  不同HAuCl4/AgNO3比例时GO/Au/Ag复合材料SEM谱图

    Figure  1.  SEM images of GO/Au/Ag composites with different ratios of HAuCl4/AgNO3

    图  2  不同HAuCl4/AgNO3比例时GO/Au/Ag复合材料EDS谱图

    Figure  2.  EDS spectra of GO/Au/Ag composites with different ratios of HAuCl4/AgNO3:

    图  3  GO/Au/Ag系列样品UV图谱

    Figure  3.  UV spectra of GO/Au/Ag composites

    图  4  以GO/Au/Ag复合材料为基底时R6G的SERS图谱

    Figure  4.  SERS spectra of R6G with on the substrates GO/Au/Ag composite as the substrates

    表  1  GO/Au/Ag复合材料EDS图谱元素含量

    Table  1.   Element content of GO/Au/Ag composites based on EDS spectra %

    样品COAuAg
    GO/Au/Ag30:1 52.25 28.59 13.58 5.59
    GO/Au/Ag18:1 53.73 30.79 10.64 4.84
    GO/Au/Ag15:1 55.26 21.13 11.65 11.97
    GO/Au/Ag12:1 33.43 23.46 20.31 22.80
    GO/Au/Ag4:1 36.94 26.19 16.69 20.19
    GO/Au/Ag6:5 45.13 32.26 5.75 16.87
    下载: 导出CSV

    表  2  以GO/Au/Ag复合材料为基底时R6G拉曼位移及EF值

    Table  2.   Raman shift and EF values of R6G with substrates GO/Au/Ag composites as substrates

    样品拉曼位移
    614 cm−1EF773 cm−1EF1186 cm−1EF
    GO/Au/Ag30∶1−40.70×104−10.21×104−40.21×104
    GO/Au/Ag18∶1−42.57×104−10.85×104−41.02×104
    GO/Au/Ag15∶1−42.60×104−10.96×104−41.47×104
    GO/Au/Ag12∶1−26.72×104−12.60×104−43.86×104
    GO/Au/Ag4∶1−43.06×104−12.62×104−44.20×104
    GO/Au/Ag6∶5−41.12×104−10.44×104−40.37×104
    下载: 导出CSV
  • [1] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J] . Chemical Physics Letters,1974,26(2):163 − 166.
    [2] LE RU E, BLACKIE E J, MEYER M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J] . Journal of Physical Chemistry C,2007,111(37):13794 − 13803.
    [3] WANG K Q, SUN D W, PU H B, et al. Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes[J] . Talanta,2019,191:449 − 456.
    [4] D’ANDREA C, FAZIO B, GUCCIARDI P G, et al. SERS enhancement and field confinement in nanosensors based on self-organized gold nanowires produced by ion-beam sputtering[J] . Journal of Physical Chemistry C,2014,118(118):8571 − 8580.
    [5] GUO P Z, SIKDAR D, HUANG X P, et al. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement[J] . Nanoscale,2015,7(7):2862 − 2868.
    [6] MILLO D, BONIFACIO A, MONCELLI M R, et al. Characterization of hybrid bilayer membranes on silver electrodes as biocompatible SERS substrates to study membrane–protein interactions[J] . Colloids and Surfaces B: Biointerfaces,2010,81(1):212 − 216.
    [7] BAI T T, SUN J F, CHE R C, et al. Controllable preparation of core–shell Au–Ag nanoshuttles with improved refractive index sensitivity and SERS activity[J] . ACS Applied Materials & Interfaces,2014,6(6):3331 − 3340.
    [8] MA P Y, LIANG F H, DIAO Q P, et al. Selective and sensitive SERS sensor for detection of Hg2+ in environmental water base on rhodamine-bonded and amino group functionalized SiO2-coated Au-Ag core-shell nanorods[J] . RSC Advances,2015,5(41):32168 − 32174.
    [9] HAN X X, CHEN L,KUHLMANN U, et al. Magnetic titanium dioxide nanocomposites for surface-enhanced resonance Raman spectroscopic determination and degradation of toxic anilines and phenols[J] . Angewandte Chemie International Edition,2014,53(53):2481 − 2484.
    [10] ZHANG J L,YANG H J,SHEN G X, et al. Reduction of graphene oxide via L-ascorbic acid[J] . Chemical Communications,2010,47(7):1112 − 150.
    [11] ALEKSANDRA W, KAMAT P V. Reduced graphene oxide and porphyrin. An interactive affair in 2-D[J] . ACS Nano,2010,4(11):6697 − 6706.
    [12] EMERY J D, WANG Q H, ZARROUATI M, et al. Structural analysis of PTCDA monolayers on epitaxial graphene with ultra-high vacuum scanning tunneling microscopy and high-resolution X-ray reflectivity[J] . Surface Science,2011,605(17-18):1685 − 1693.
    [13] XIE L M, LING X, FANG Y, et al. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy[J] . Journal of the American Chemical Society,2009,131(29):9890 − 9891.
    [14] OTTO A. The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering[J] . Journal of Raman Spectroscopy,2005,36(36):497 − 509.
    [15] ZHANG M J, LENG Y D, HUANG J, et al. Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments[J] . Applied Surface Science,2017,(425):654 − 662.
    [16] JUNG N, CROWTHER A C, KIM N, et al. Raman enhancement on graphene: adsorbed and intercalated molecular species[J] . ACS Nano,2010,4(11):7005 − 7013.
    [17] WANG L, ZHANG Y, YANG Y Q,et al. Strong dependence of surface enhanced Raman scattering on structure of graphene oxide film[J] . Materials,2018,11(7):1199.
    [18] ZHENG X L, PENG Y S, YANG Y, et al. Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering[J] . Journal of Raman Spectroscopy,2017,48(48):97 − 103.
    [19] YANG H P, HU H L, NI Z H, et al. Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces[J] . Carbon,2013,(62):422 − 429.
    [20] YANG Y Q, WANG L, WANG Q S, et al. Synthesis of GO/Au/Ag nanocomposite with excellent surface enhanced Raman scattering effect[J] . Journal of Physics. Conference Series,2020,1622(1):012067.
    [21] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J] . Journal of the American Chemical Society,1958,80(6):1339.
    [22] ROBINSON J T, TABAKMAN S M, LIANG Y Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J] . Journal of the American Chemical Society,2011,133(133):6825 − 6831.
    [23] 王玲, 张艳, 张婧, 等. Au@石墨烯量子点复合材料的制备及表面增强拉曼散射应用[J] . 新型炭材料,2019,34(6):606 − 610.
    [24] HIROYUKI W, NORIHIKO H, YASUSHI I, et al. DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy[J] . Journal of Physical Chemistry B,2005(109):5012 − 5020.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  231
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 刊出日期:  2020-12-30

目录

    /

    返回文章
    返回